

	$A = \begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix}$ 2 of 8
	(1 - 1 2 0)
	Hence find the rank of A.
	(10)
(c)	Find the minimum polynomial of the matrix.
	$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix},$
	and use it to determine whether A is similar to a diagonal matrix.
	(10)
(d)	Show that the quadratic form
	$2x_2 - 4xy + 3xy + 6y^2 + 6yz + 8z^2$
	in three variables is positive definite.
	(10)
(a)	Let $f(x) = e^{-\pi x^2}$ $(x \neq 0)$
	= 0 for x = 0
	Show that $f'(0) = 0$ and $f'(0) = 0$.
	Write $f^{(k)}(x)$ as $P\left(\frac{1}{x}\right)f(x)$ for $x \neq 0$, where P is a polynomial and $f^{(k)}$ denotes the k^{th}
	derivation of f.
	(10)
(b)	Using Lagrange multipliers, show that a rectangular box with lid of volume 1000 cubic units and of least surface area is a cube of side 10 units.
	(10)
(c)	Show that the area of the surface of the solid obtained by revolving the arc of the curve $y = c$
	$\cosh\left(\frac{x}{c}\right)$ joining (0, c) and (x, y) about the x-axis is
	(10)
(d)	Define $\Gamma: (0, \infty) \to IR$ by
	$\Gamma(x) = \int_0^x f^{x+1} e^{-t} dt$. Show that this integral converges for all $x \ge 0$ and that $\Gamma(x+1) = x \Gamma(x)$.
	(10)
(a)	Show that the equation $\sqrt{fx} + \sqrt{gy} + \sqrt{hz} = 0$ represents a cone that touches the co-ordinate planes and that the equation to its reciprocal cone is
	fvz + gzx + hxv = 0

3

4.

(b) Show that any two generators belonging to the different system of generating lins of a hyperboloid of one sheet intersect.

(10)

(10)

(c) Show that the locus of a point from which three mutually perpendicular tangent lines can be drawn to the paraboloid

 $ax^{2} + by^{2} + 2z = 0$ is $ab(x^{2} + y^{2}) + 2(a + b)z = 1.$

(d) Show that the enveloping cylinder of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

whose generators are parallel to the line

$$\frac{x}{0} = \frac{y}{\pm \sqrt{a^2 - b^2}} = \frac{z}{c}$$

meet the plane z = 0 in circles.

(10)

(10)

(10)

3 of 8

(10)

SECTION B

Answer any four of the following:

(a) Find the orthogonal trajectories of the family of co-axial circles

$$\mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{g}\mathbf{x} + \mathbf{c} = 0$$

where g is a parameter

$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$

which are linearly independent on every real interval.

(c) A particle moves with an acceleration which is always towards, and equal to μ divided by the distance from, a fixed point 0. If it starts from rest at a distance a from 0, show that it will arrive at 0 in time

$$\alpha \sqrt{\frac{\pi}{2\mu}}$$

6

(10)

(d) Show that the depth of the centre of pressure of the area included between the arc and the asymptote of the curve

 $(r-a)\cos(b) = b$ is $\frac{a}{4} - \frac{3\pi a + 16b}{3\pi b + 4a}$,

the asymptote being in the surface and the plane of the curve being vertical (10)

- (e) Find expressions for curvature and torsion at a point on the curve x = a cos θ y = a sin θ, z = a θ cot β
- (a) Solve and examine for singular solution:

$$y^2 - 2pxy + p^2(x^2 - 1) = m^2$$

(10)

(b) Solve

$$x^{3}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right).$$

$$(x^3+1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0.$$

find another linearly independent solution by reducing order and write the general solution.

(d) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + a^2y = \sec ax, a \text{ is real.}$$

(10)

(10)

4 of 8

(10)

(a) A shell fired with velocity V at an elevation θ hits an airship at a height h from the ground, which is moving, horizontally away from the gun with velocity v. Show that if

$$(2 V \cos \theta - v) (v^2 \sin^2 \theta - 2gh)^{1/2} = v V \sin \theta$$

the shell might have also hit the ship if the latter had remained stationary in the position it occupied when the gun was actually fired. (10)

- (b) Assuming the eccentricity e of a planet's orbit is a small fraction, show that the ratio of the time taken by the planet to travel over the halves of its orbit separated by the minor axis is nearly $1 + \frac{4e}{\pi}$ (10)
- (c) A uniform rod AB of length 2a is hinged at A, a string attached to the middle point G of the rod passes over a smooth pulley at C at a height a, vertically above A, and supports a weight P having freely, find the positions of equilibrium and determine their nature as to stability or unstability (10)
- (d) A solid of cork bounded by the surface generated by the revolution of a quadrant of an ellipse about the major axis sinks in mercury up to the focus. If the centre of gravity of the cork coincides with the metacentre, prove that $2e^4 + 4e^3 + 2e^2 e 2 = 0$ (10)
- (a) If \overline{r} is the position vector of the point (x, y, z) with respect to the origin, prove that

$$\nabla^2 f(r) = f''(r) + \frac{2}{2} f'(r).$$

Find f(r) such that $\Delta^2 f(r) = 0$

(10)

(10)

- (b) If \vec{F} is solenoidal, prove that Curl Curl Curl Curl $\vec{F} = \nabla^{4}\vec{F}$ (10)
- (c) Verify Stoke's Theorem when

$$\mathbf{F} = (2 xy - x^2) \tilde{i} - (x^2 - y^2) \tilde{d}$$

and C is the boundary of the region enclosed by the parabolas $y^2 = x$ and $x^2 = y$. (10)

(d) Express $\nabla \times \vec{F}$ and $\nabla^2 \Phi$ in cylindrical co-ordinates,

7

8

IFS-2003

MATHEMATICS

PAPER - II SECTION A

Answer any four parts:

 $(10 \ge 4 = 40)$

(13)

(a) Show that if every element of a group (G, *) be its own inverse, then it is an Abelian group. Give an example to show that the converse is not true.

(b) Evaluate

$$I = \iint (a^2 - x^2 - y^2)^{1/2} dx \, dy$$

over the positive quadrant of the circle

$$x^2 + y^2 = a^2$$

(c)

If w = f(z) = u(x, y) + iv(x, y), z = x + iy, is analytic in a domain, show that

 $\frac{\partial w}{\partial \bar{z}} = 0$

Hence or otherwise, show that sin (x + i3y) cannot be analytic

- (d) Investigate the continuity of the function f(x) = [x]/x for $x \neq 0$ and f(0) = -1.
- (e) (i) Explain the following terms of an
 - LPP
 - 1. Solution
 - 2. Basic solution
 - Basic feasible solution
 - Degenerate basic solution
 - (ii) Give the dual of the following LFP:

Maximize $Z = 2x_1 + 3x_2 + x_3$

Subject to $4x_1 + 3x_2 + x_3 = 6$

$$x_1 + 2x_2 + 3x_3 = 4$$

 $x_1, x_2, x_3 \ge 0$

2

(a) Let
$$G = \{a \in \mathbb{R} : -1 \le a \le 1\}$$
. Define a binary operation * on G by

 $a \cdot b = \frac{a+b}{1+ab}$ for all $a, b \in G$.

Show that (G, *) is a group

(b) Let f(x) = |x|, x ∈ [0, 3], where [x] denotes the greatest integer not greater than x. Prove that f is Riemann integrable on [0, 3] and evaluate

5 of 8

			6 of 8
		$\int_0^a f(x) dx$	
			(13)
	(c)	 Let (a, b) be any open interval, f a function defined and differentiable on (a, that its derivative is bounded on (a, b). Show that f is uniformly continuous on 	b) such (a, b)
		(ii) If f is a continuous function on [a, b] and if	
		$\int_a^b f^2(x) dx = 0$	
		then show that fix) = 0 for all x in [a, b]. Is this true if f is not continuous?	
			(14)
3	(a)	Let R be the set of matrices of the form	
		$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, $a, b \in F$	
		where F is a field. With usual addition and multiplication as binary operations, show the a commutative ring with unity. Is it a field if $F = Z_2, Z_5$?	hat R is
			(14)
	(b)	Discuss the transformation	
		$w = z + \frac{1}{z}$	
		and hence, show that-	
		(i) a circle in z-plane is mapped on an ellipse in the w-plane,	
		(ii) a line in the z-plane is mapped into a hyperbola in the w-plane.	
			(13)
	(c)	Find the Laurent series expansion of the function	
		$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$	
		valid in the region $2 \le z \le 3$.	
			(13)
4,	(a)	Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + = 1$.	$y^2 + z^2$
			(13)
	(b)	Find the maximum value of $Z = 2x + 3y$ subject to the constraints	
		$x-y \ge 0$	
		$\begin{array}{c} x + y \leq 30 \\ y \geq 3 \end{array}$	
		$0 \le y \le 12$ and $0 \le x \le 20$	
		by graphical method.	
			(13)
	(c)	Apply simplex method to solve the following linear programming problem	
			(14)
		Maximize $Z = 4x_1 + 3x_2$ subject to the constraints	

 $\begin{array}{l} 3x_1 + x_2 \leq 15 \\ 3x_1 + 4x_2 \leq 24 \\ x_1 \geq 0, \ x_2 \geq 0 \end{array}$

SECTION B

5	Answer any four parts		
		(10 x 4	= 40)
	(a)	Find the general solution of the partial differential equation	
		$(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} = ly - mx$	
			(10)
	(b)	Find the cube root of 10 using Newton-Raphson method, correct to 4 decimal places.	
			(10)
	(c)	Apply modified Euler's method to determine y (0.1), given that	
		$\frac{dy}{dx} = x^2 + y$	
		when $y(0) = 1$	
			(10)
	(d)	(i) Convert ABCD hex and 76543 octal to decimal	
		(ii) Convert 39870 decimal to octal and hexadecimal.	
			(10)
	(e)	Show that the surface	
		$\frac{x^2}{a^2k^2t^4} + kt^2 \left(\frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = 1$	
		is a possible form of boundary surface of a liquid at time t.	
			(10)
6	(a)	Form the partial differential equation by eliminating the arbitrary function from	
		$f(x^2 + y^2, z - xy) = 0, z = z (z, y)$	
			(13)
	(b)	Solve	
		$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial t^2}$	
		given that	
		(i) $u = 0$, when $t = 0$ for all t	
		(ii) $u = 0$ when $x = l$ for all t	

7 of 8

8 of 8

(14)

(c) A rod of length 2 a is suspended by a string of length 1 attached to one end, if the string and rod revolve about the vertical with uniform angular velocity and their inclinations to the vertical be θ and φ, respectively, show that

 $\frac{3l}{a} = \frac{(4 \tan \theta - 3 \tan \phi) \sin \phi}{(\tan \phi - \tan \theta) \sin \theta}$

(iii) $\begin{aligned} u &= x \quad in\left(0, \frac{l}{2}\right) \\ &= l - x \quad in\left(\frac{l}{2}, l\right) \end{aligned} at t = 0$

7 (a)

(c)

The velocities of a car running on a straight road at intervals of 2 minutes are given below:

Time (in min): 0 2 4 6 8 10 12 Velocity (in km/hr): 0 22 30 27 18 7 0

Apply Simpson's one-third rule to find the distance covered by the car.

(13)

(13)

(b) Consider the velocity field given by

 $\tilde{q} = i(1 + At) + jx$

Find the equation of the streamline at $t = t_0$ passing through the point (x_0, y_0) . Also, obtain the equation of the path line of a fluid element which comes to (x_0, y_0) at $t = t_0$. Show that, of A = 0, the streamline and path line coincide.

(13)

Write a program in BASIC to integrate

 $\int_0^{10} \left(1 - e^{-\frac{x}{2}}\right) dx$

by trapezoidal rule for 20 equal sub-divisions of the interval (0, 10). Indicate which lines are to be changed for a different integral.

(14)

8 (a) Draw a flowchart and write a program in BASIC for an algorithm to determine the greatest common divisor of two given positive integers.

(13)

(b) Apply Runge-Kutta method of order 4 to find an approximate value of y when x = 0.2 given that

 $\frac{dy}{dx} = x + y, y = 1 \text{ when } x = 0.$

(14)

(c) A uniform sphere rolls down an inclined plane rough enough to prevent any sliding; discuss the motion. Hence, show that for pure rolling μ (coefficient of friction) is greater than $\frac{2}{7}$ tan α for a solid sphere, where α the inclination of the plane.

(13)