UPSC Civil Services Main 2006 - Mathematics Linear Algebra

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) Let \mathcal{V} be a vector space of all 2×2 matrices over the field F. Prove that \mathcal{V} has dimension 4 by exhibiting a basis for \mathcal{V} .

Solution. Let $\mathbf{M_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{M_2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \mathbf{M_3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \mathbf{M_4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. We will show that $\{\mathbf{M_1}, \mathbf{M_2}, \mathbf{M_3}, \mathbf{M_4}\}$ is a basis of \mathcal{V} over F.

 $\frac{\{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4\} \text{ generate } \mathcal{V}. \text{ Let } \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{V}. \text{ Then } \mathbf{A} = a\mathbf{M}_1 + b\mathbf{M}_2 + c\mathbf{M}_3 + d\mathbf{M}_4, \text{ where } a, b, c, d \in F. \text{ Thus } \{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4\} \text{ is a set of generators for } \mathcal{V} \text{ over } F.$

 $\frac{\{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4\} \text{ are linearly independent over } F. \text{ If } a\mathbf{M}_1 + b\mathbf{M}_2 + c\mathbf{M}_3 + d\mathbf{M}_4 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mathbf{0} \text{ for } a, b, c, d \in F, \text{ then clearly } a = b = c = d = 0, \text{ showing that } \{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4\} \text{ are linearly independent over } F.$

Hence $\{\mathbf{M_1}, \mathbf{M_2}, \mathbf{M_3}, \mathbf{M_4}\}$ is a basis of \mathcal{V} over F and dim $\mathcal{V} = 4$.

Question 1(b) State the Cayley-Hamilton theorem and using it find the inverse of $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

Solution. Let \mathbf{A} be an $n \times n$ matrix and let \mathbf{I}_n be the $n \times n$ identity matrix. Then the *n*-degree polynomial $|\mathbf{xI}_n - \mathbf{A}|$ is called the characteristic polynomial of \mathbf{A} . The Cayley-Hamilton theorem states that every matrix is a root of its characteristic polynomial:

if
$$|\mathbf{x}\mathbf{I_n} - \mathbf{A}| = x^n + a_1 x^{n-1} + \ldots + a_n$$

then $\mathbf{A}^n + a_1 \mathbf{A}^{n-1} + \ldots + a_n \mathbf{I_n} = \mathbf{0}$

 $|\mathbf{x}\mathbf{I}_{\mathbf{n}} - \mathbf{A}| = 0$ is called the characteristic equation of \mathbf{A} .

Let $\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$. The characteristic equation of \mathbf{A} is $0 = \begin{vmatrix} x-1 & -3 \\ -2 & x-4 \end{vmatrix} = (x-1)(x-4) - 6 = x^2 - 5x - 2$.

By the Cayley-Hamilton Theorem, $\mathbf{A}^2 - 5\mathbf{A} - 2\mathbf{I_2} = \mathbf{0} \Rightarrow \mathbf{A}(\mathbf{A} - 5\mathbf{I_2}) = (\mathbf{A} - 5\mathbf{I_2})\mathbf{A} = 2\mathbf{I_2}$. Thus \mathbf{A} is invertible and $\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - 5\mathbf{I_2})$, so $\mathbf{A}^{-1} = \frac{1}{2}\left[\begin{pmatrix}1 & 3\\ 2 & 4\end{pmatrix} - \begin{pmatrix}5 & 0\\ 0 & 5\end{pmatrix}\right] = \begin{pmatrix}-2 & \frac{3}{2}\\ 1 & -\frac{1}{2}\end{pmatrix}$

For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.

Question 2(a) If $\mathbf{T} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is defined by $\mathbf{T}(x, y) = (2x - 3y, x + y)$, compute the matrix of \mathbf{T} with respect to the basis $\mathscr{B} = \{(1, 2), (2, 3)\}.$

Solution. It is obvious that $\mathbf{T}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation. Clearly

$$\mathbf{T}(\mathbf{v_1}) = \mathbf{T}(1,2) = (-4,3) \mathbf{T}(\mathbf{v_2}) = \mathbf{T}(2,3) = (-5,5)$$

Let $(a, b) = \alpha \mathbf{v_1} + \beta \mathbf{v_2}$, where $a, b, \alpha, \beta \in \mathbb{R}$, then $\alpha + 2\beta = a, 2\alpha + 3\beta = b \Rightarrow \alpha = 2b - 3a, \beta = 2a - b$. Thus $\mathbf{T}(\mathbf{v_1}) = 18\mathbf{v_1} - 11\mathbf{v_2}, \mathbf{T}(\mathbf{v_2}) = 25\mathbf{v_1} - 15\mathbf{v_1}$, so $(\mathbf{v_1}, \mathbf{v_2})\mathbf{T} = (\mathbf{T}(\mathbf{v_1}), \mathbf{T}(\mathbf{v_2})) = (\mathbf{v_1}, \mathbf{v_2}) \begin{pmatrix} 18 & 25 \\ -11 & -15 \end{pmatrix}$. Thus the matrix of \mathbf{T} with respect to the basis \mathscr{B} is $\begin{pmatrix} 18 & 25 \\ -11 & -15 \end{pmatrix} \blacksquare$

Question 2(b) Using elementary row operations, find the rank of $\mathbf{A} = \begin{pmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & -2 \\ 0 & 1 & 2 & 1 \end{pmatrix}$

Solution. Operations $\mathbf{R_1} - 2\mathbf{R_3}, \mathbf{R_2} - \mathbf{R_4}$ give

$$\mathbf{A} \sim \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & -2 & -3 & -2 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Operation $\mathbf{R_3} - \mathbf{R_1}$ gives

$$\mathbf{A} \sim \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & -9 & -5 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Operations $\mathbf{R_3} + 4\mathbf{R_2}, \mathbf{R_4} - \mathbf{R_2} \Rightarrow$

$$\mathbf{A} \sim \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -9 & -5 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

 $\mathbf{R_4} + \frac{2}{9}\mathbf{R_3} \Rightarrow$

$$\mathbf{A} \sim \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -9 & -5 \\ 0 & 0 & 0 & -\frac{1}{9} \end{pmatrix}$$

Clearly $|\mathbf{A}| = 1 \Rightarrow \operatorname{rank} \mathbf{A} = 4$.

² For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.

Question 2(c) Investigate for what values of λ and μ the equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

have (1) no solution (2) a unique solution (3) infinitely many solutions.

Solution. (2) The equations will have a unique solution for all values of μ if the coefficient matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{pmatrix}$ is non-singular. i.e. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & \lambda - 1 \end{vmatrix} = \lambda - 1 - 2 \neq 0$ i.e. $\lambda \neq 3$. Thus for $\lambda \neq 3$ and for all μ we have a unique solution which can be obtained by Cramer's

Thus for $\lambda \neq 3$ and for all μ we have a unique solution which can be obtained by Cramer's rule or otherwise.

(1) If $\lambda = 3, \mu \neq 10$ then the system is inconsistent and we have no solution.

(3) If $\lambda = 3, \mu = 10$, the system will have infinitely many solutions obtained by solving $x + y = 6 - z, x + 2y = 10 - 3z \Rightarrow x = 2 + z, y = 4 - 2z, z$ is any real number.

Question 2(d) Find the quadratic form q(x, y) corresponding to the symmetric matrix

$$\mathbf{A} = \begin{pmatrix} 5 & -3 \\ -3 & 8 \end{pmatrix}$$

Is this quadratic form positive definite? Justify your answer.

Solution. The quadratic form is

$$q(x,y) = (x \ y) \begin{pmatrix} 5 & -3 \\ -3 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

= $5x^2 - 6xy + 8y^2$
= $5[x^2 - \frac{6}{5}xy + \frac{8}{5}y^2]$
= $5[(x - \frac{3}{5}y)^2 + \frac{31}{25}y^2]$

Clearly q(x,y) > 0 for all $(x,y) \neq (0,0), (x,y) \in \mathbb{R}^2$. Thus q(x,y) is positive definite. In fact, $q(x,y) = 0 \Rightarrow x - \frac{3}{5}y = 0, y = 0 \Rightarrow x = y = 0$.

3 For more information log on www.brijrbedu.org. Copyright By Brij Bhooshan @ 2012.