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Question 1(a) Let V be a finitely generated vector space. Show that V has a finite basis
and any two bases of V have the same number of vectors.

Solution. Let {v1, . . . ,vm} be a generating set for V , we assume that vi 6= 0, 1 ≤ i ≤ m.
If {v1, . . . ,vm} is linearly independent, then it is a basis of V . Otherwise, there exists a
vk that depends linearly on {vi | 1 ≤ i ≤ m, i 6= k}. This latter set is also a generating
set, and we rename it {u1, . . . ,um−1}. We now apply the same reasoning to it — either it
is linearly independent and hence a basis, or we can drop an element from it and it still
remains a generating set. In a finite number of steps, we reach {x1, . . . ,xr} ⊆ {v1, . . . ,vm}
such that {x1, . . . ,xr} is linearly independent and a generating set, thus {x1, . . . ,xr} is a
basis of V .

Note: An alternative approach leading to the same result is to pick the maximal linearly
independent subset of {v1, . . . ,vm}. There are only 2m such subsets, so we can do so in a
finite number of steps (in the above procedure we dropped the dependent elements one at
a time to reach the maximal linearly independent subset). Now to be a basis, the maximal
linearly independent subset S = {x1, . . . ,xr} ⊆ {v1, . . . ,vm} needs to generate V . But this
is immediate, as for each vi, either vi ∈ S or S ∪ {vi} is linearly dependent — in that case∑r

j=1 ajxj + bvi = 0, but not all aj, b are 0. Now if b = 0 then
∑r

j=1 ajxj = 0⇒ aj = 0 for
1 ≤ j ≤ r, as S is linearly independent, and this contradicts the statement that not all aj, b
are 0. So b 6= 0, hence vi is a linear combination of S, hence S generates V and is a basis.

Any two bases have the same number of elements: Let {v1, . . . ,vm} and {w1, . . . ,wn}
be two bases of V . Assume wlog that m ≤ n. Now since w1 ∈ V , w1 is generated by the
basis {v1, . . . ,vm}, thus w1 =

∑m
j=1 ajvj. There must be at least one non-zero ak, as

w1 6= 0. Now the set {vi | 1 ≤ i ≤ m, i 6= k} ∪ {w1} generates the set {v1, . . . ,vm} (since
vk = 1

ak
w1 −

∑m
j=1,j 6=k

aj

ak
vj) and hence generates V .

Now we have w2 =
∑m

i=1,i 6=k aivi + bw1. At least one of the ai 6= 0, otherwise we have a
linear equation between w1 and w2, but these are linearly independent. We replace vi by w2,
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and the result is also a generating set as above. Continuing, after m steps, we get a subset
{w1, . . . ,wm} which is a generating set. Now if n > m, we would have wn =

∑m
i=0 aiwi, but

this is not possible as the wi were a basis, and thus linearly independent. Hence n = m, and
the two bases have equal number of elements.

Question 1(b) Let V be the vector space of polynomials of degree ≤ 3. Determine whether
the following vectors of V are linearly dependent or independent: u = t3 − 3t2 + 5t + 1, v =
t3 − t2 + 8t+ 2, w = 2t3 − 4t2 + 9t+ 5.

Solution. Let au+ bv + cw = 0. Then

a+ b+ 2c = 0 (1)

−3a− b− 4c = 0 (2)

5a+ 8b+ 9c = 0 (3)

a+ 2b+ 5c = 0 (4)

From (4) - (1) we get b+ 3c = 0. Substituting b = −3c in (2), c = −3a⇒ b = 9a. Now from
(1), a+ 9a− 6a = 0⇒ a = 0⇒ b = c = 0. Thus au+ bv + cw = 0⇒ a = b = c = 0, so the
vectors are linearly independent.

Question 1(c) For any linear transformation T : V1 → V2 prove that

rankT ≤ min(dimV1, dimV2)

Solution. By definition, rankT = dimT (V1). Clearly T (V1) is a subspace of V2 and
therefore dimT (V1) ≤ dimV2. Let v1, . . . ,vn be a basis of V1, then T (V1) is generated by
T (v1), . . . , T (vn) — If w ∈ T (V1), then there exists v ∈ V1 such that T (v) = w. But v =∑n

i=1 aivi, ai ∈ R, therefore w = T (v) =
∑n

i=1 aiT (vi)⇒ {T (v1), . . . , T (vn)} is a generating
system for T (V1)⇒ dimT (V1) ≤ n. Thus rankT = dimT (V1) ≤ min(dimV1, dimV2).

Question 2(a) Show that every non-singular matrix can be expressed as a product of ele-
mentary matrices.

Solution. We first list all the elementary matrices:

1. Eij = the matrix obtained by interchanging the i-th and j-th rows (or the i-th and
j-th columns of the unit matrix. For example, if n = 4, then

E23 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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2. Ei(α) is the matrix obtained by multiplying the i-th row of the unit matrix by α =
the matrix obtained by multiplying the i-th column of the unit matrix by α.

3. Eij(β) = the matrix obtained by adding β times the j-th row to the i-th row of the
unit matrix.

4. (Eij(β))′ = transpose of Eij(β) = the matrix obtained by adding β times the j-th
column to the i-th column of the unit matrix.

All elementary matrices are non-singular. In fact |Eij| = −1, |Ei(α)| = α, |Eij(β)| =
|(Eij(β))′| = 1.

We now prove the result.
(1) Let C = AB. Then any elementary row transformation on AB is equivalent to sub-

jecting A to the same row transformation. Let A =

R1
...
Rm


m×n

and B =
(
C1 . . . Cp

)
n×p

.

Then AB =

R1C1 . . . R1Cp
...

...
RmC1 . . . RmCp


m×p

. Thus if any elementary row transformation i.e. (i)

Intercanging two rows (ii) Multiplying a row by a scalar (iii) Adding a scalar multiple of a
row to another row, is carried out on A, the same will be carried out on AB and vice versa.
Similarly any column transformation on B is equivalent to the same column transformation
on AB.

(2) Multiplying by an elementary matrix Eij,Ei(α),Eij(β) on the left is the same as per-
forming the corresponding elementary row operation on the matrix. Multiplying the matrix
by an elementary matrix to the right is equal to subjecting the matrix to the correspond-
ing column transformation. We write A = IA. Now interchanging the i-th and j-th row
of A is equivalent to doing the same on I in IA (result (1) above), which is the same as
EijA. Similar results hold for the other two row transformations. Writing A as AI gives
the corresponding result for column transformations.

(3) We now prove that if A is a matrix of rank r > 0, then there exist P,Q products of

elementary matrices such that PAQ =

(
Ir 0
0 0

)
where Ir is the unit matrix of order r. Since

A 6= 0, A has at least one non-zero element, say aij. By interchanging the i-th row with
the first row and the j-th column with the first column, we get a new matrix Bij = (bij)
such that b11 6= 0. This simply means that there exist elementary matrices P1,Q1 such
that P1AQ1 = B. We multiply P1AQ1 by P2 = E1(b

−1
11 ) to obtain P2P1AQ1 = C =

1 ∗ . . . ∗
∗
... ∗
∗

. Subtracting suitable multiples of the first row from the remaining rows of

C and suitable multiples of the first column from the remaining columns, we get the new
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matrix D of the form


1 0 . . . 0
0
... A∗

0

. Thus we have proved that there exist P∗,Q∗ products

of elementary matrices such that P∗AQ∗ =


1 0 . . . 0
0
... A∗

0

. We carry on the same process

on A∗ without affecting the first row and column, and in r steps we get P∗∗AQ∗∗ =

(
Ir 0
0 E

)
,

where P∗∗,Q∗∗ are products of elementary matrices. Note that E = 0 because rank A = r.
Now if A is nonsingular, then P∗∗AQ∗∗ = I. Inverting the elementary matrices (the

inverse of an elementary matrix is elementary), we get that A is a product of elementary
matrices.

Question 2(b) Reduce the matrix A to its normal form, and hence or otherwise determine
its rank.

A =

0 1 2 1
1 2 3 2
3 1 1 3



Solution. Interchange of R1 and R2 ⇒ A ∼

1 2 3 2
0 1 2 1
3 1 1 3


R3 − 3R1 ⇒ A ∼

1 2 3 2
0 1 2 1
0 −5 −8 −3


R3 + 5R2 ⇒ A ∼

1 2 3 2
0 1 2 1
0 0 2 2


−1

2
R3 ⇒ A ∼

1 2 3 2
0 1 2 1
0 0 −1 −1


R3 +R2 ⇒ A ∼

1 2 3 2
0 1 2 1
0 1 1 0


Interchanging C2, C4, A ∼

1 2 3 2
0 1 2 1
0 0 1 1


C2 − 2C1, C3 − 3C1, C4 − 2C1 ⇒ A ∼

1 0 0 0
0 1 2 1
0 0 1 1


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C3 − 2C2, C4 − C2 ⇒ A ∼

1 0 0 0
0 1 0 0
0 0 1 1

. C4 − C3 ⇒ A ∼

1 0 0 0
0 1 0 0
0 0 1 0


Thus we have P(3 × 3) and Q(4 × 4) both products of elementary matrices such that

PAQ =

1 0 0 0
0 1 0 0
0 0 1 0

, which is the normal form of A. Clearly the rank of A is 3.

Question 2(c) Show that the equations

x+ y + z = 3

3x− 5y + 2z = 8

5x− 3y + 4z = 14

are consistent and solve them.

Solution. The coefficient matrix A =

1 1 1
3 −5 2
5 −3 4

.

det A = 1(−20+6)−1(12−10)+1(−9+25) = 0, thus rank A < 3. Actually rank A = 2,

since

∣∣∣∣1 1
3 −5

∣∣∣∣ 6= 0.

The augmented matrix B =

1 1 1 3
3 −5 2 8
5 −3 4 14

.

R2 − 3R1, R3 − 5R1 ⇒ B ∼

1 1 1 3
0 −8 −1 −1
0 −8 −1 −1


R3 −R2 ⇒ B ∼

1 1 1 3
0 −8 −1 −1
0 0 0 0


Thus rank B = 2, because

∣∣∣∣1 1
0 −8

∣∣∣∣ 6= 0.

Since rank A = rank B = 2, the system is consistent, and the space of solutions has
dimension 1.

Now x + y = 3 − z, 3x − 5y = 8 − 2z, subtracting the second from 3 times the first we
get 8y = 1 − z ⇒ y = 1−z

8
. x = 3 − z − 1−z

8
= 23−7z

8
. Thus the solutions are given by

(23−7z
8
, 1−z

8
, z), z ∈ R.

Question 3(a) Prove that a square matrix satisfies its characteristic equation. Use this
result to find the inverse of

A =

0 1 2
1 2 3
3 1 1


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Solution. The first part is the Cayley-Hamilton theorem, see 1987 question 3(a).
The characteristic equation of A is

|A− λI| =

∣∣∣∣∣∣
−λ 1 2
1 2− λ 3
3 1 1− λ

∣∣∣∣∣∣ = 0

⇒ −λ(λ2 − 3λ+ 2− 3)− (1− λ− 9) + 2(1− 6 + 3λ) = 0

⇒ λ3 − 3λ2 − 8λ+ 2 = 0

Thus A3 − 3A2 − 8A + 2I = 0⇒ A(A2 − 3A− 8I) = −2I, or A−1 = −1
2
(A2 − 3A− 8I).

A2 =

0 1 2
1 2 3
3 1 1

0 1 2
1 2 3
3 1 1

 =

 7 4 5
11 8 11
4 6 10


∴ A−1 =

1

2

−
 7 4 5

11 8 11
4 6 10

+

0 3 6
3 6 9
9 3 3

+

8 0 0
0 8 0
0 0 8

 =
1

2

 1 −1 1
−8 6 −2
5 −3 1



Note: In this case, we were required to use this method to find the inverse. An alternate
method of finding the inverse by performing elementary row and column operations is shown
in 1985 question 1(c).

Question 3(b) Find the eigenvalues and eigenvectors of

A =

 8 −6 2
−6 7 −4
2 −4 3


Solution.

|A− xI| =

∣∣∣∣∣∣
8− x −6 2
−6 7− x −4
2 −4 3− x

∣∣∣∣∣∣ = 0

⇒ (8− x)(x2 − 10x+ 21− 16) + 6(6x− 18 + 8) + 2(24− 14 + 2x) = 0

⇒ −x3 + 18x2 − 85x+ 40 + 36x− 60 + 20 + 4x = 0

⇒ x3 − 18x2 + 45x = 0

Thus the eigenvalues are 0, 3, 15.

If (x1, x2, x3) is an eigenvector for the eigenvalue 0, then

 8 −6 2
−6 7 −4
2 −4 3

x1

x2

x3

 = 0.

Thus 8x1 − 6x2 + 2x3 = 0,−6x1 + 7x2 − 4x3 = 0, 2x1 − 4x2 + 3x3 = 0⇒ x1 = 1
2
x3, x2 = x3.

Thus (1, 2, 2) is an eigenvector for 0, in general (x/2, x, x), x 6= 0 is an eigenvector for 0.
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If (x1, x2, x3) is an eigenvector for the eigenvalue 3, then

 5 −6 2
−6 4 −4
2 −4 0

x1

x2

x3

 = 0.

Thus 5x1 − 6x2 + 2x3 = 0,−6x1 + 4x2 − 4x3 = 0, 2x1 − 4x2 = 0 ⇒ x1 = 2x2, x3 = −2x2.
Thus (2, 1,−2) is an eigenvector for 3, in general (2x, x,−2x), x 6= 0 is an eigenvector for 3.

If (x1, x2, x3) is an eigenvector for the eigenvalue 15, then

−7 −6 2
−6 −8 −4
2 −4 −12

x1

x2

x3

 = 0.

Thus−7x1−6x2+2x3 = 0,−6x1−8x2−4x3 = 0, 2x1−4x2−12x3 = 0⇒ x1 = 2x3, x2 = −2x3.
Thus (2,−2, 1) is an eigenvector for 15, in general (2x,−2x, x), x 6= 0 is an eigenvector for
15.

Question 3(c) Show that the eigenvalues of an upper or lower triangular matrix are just
the diagonal elements of the matrix.

Solution. Let A = (aij), such that aij = 0 for i < j, i.e. A is upper triangular. Now

|xI−A| = (x− a11)(x− a22) . . . (x− ann)

showing that |xI − A| = 0 ⇒ x = a11, a22, . . . , ann. Thus the eigenvalues of A are
a11, a22, . . . , ann.

Similarly for a lower triangular matrix.

Paper II

Question 4(a) Prove that a necessary and sufficient condition that a linear transformation
A on a unitary space is Hermitian is that 〈Ax,x〉 is real for all x.

Solution. A unitary space is an old name for an inner product space. Let V be an inner
product space over C, and 〈Av,v〉 be real for all v ∈ V . Then since

〈A(v + w),v + w〉 = 〈Av,v〉 + 〈Aw,w〉 + 〈Av,w〉 + 〈Aw,v〉
〈Av,w〉 +〈Aw,v〉 is real (because 〈A(v + w),v + w〉 −〈Av,v〉 −〈Aw,w〉 is real). Hence

〈Av,w〉 + 〈Aw,v〉 = 〈w,Av〉 + 〈v,Aw〉 (1)

because z real ⇒ z = z.
Also,

〈A(v + iw),v + iw〉 = 〈Av,v〉 + 〈A(iw), iw〉 − i〈Av,w〉 + i〈Aw,v〉
thus −i〈Av,w〉 + i〈Aw,v〉 is real. Thus

−i〈Av,w〉 + i〈Aw,v〉 = −i〈w,Av〉 + i〈v,Aw〉 (2)

Multiplying (1) by i and adding to (2), we get

2i〈Aw,v〉 = 2i〈v,Aw〉
Thus A = A∗, so A is Hermitian.

Conversely, if 〈Aw,v〉 = 〈v,Aw〉 , then 〈Av,v〉 = 〈v,Av〉 = 〈Av,v〉 ⇒ 〈Av,v〉 is
real.
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Question 4(b) If A is a linear transformation on an n-dimensional vector space, then prove
that

1. rank A = rank A′.

2. nullity A = n− rank A.

Solution. We know that rank A = r if A has a minor of order r different from 0, and all
minors of order > r are 0. Thus rank A = rank A′.

For the second part, see 1998 question 3(a).

Question 4(c) Show that a real symmetric matrix A is positive definite if and only if there
exists a real non-singular matrix P such that A = PP′.

Solution. x′Ax = x′PP′x = sum of squares > 0 (because P′x 6= 0 as P is non-singular).
Conversely: Let x1,x2, . . . ,xn be a basis of Rn. We will use this to construct a new basis

e1, e2, . . . , en which satisfies eiAej = δij, as follows:

e1 =
x1√

x1Ax1

y2 = x2 − (x2Ae1)e1

e2 =
y2√

y2Ay2
. . .

yi = xi −
i−1∑
j=1

(xiAej)ej

ei =
yi√

yiAyi
. . .

e1, e2, . . . , en are linearly independent — if
∑n

i=1 aiei = 0, then take the largest i such
that ai 6= 0, this allows us to express xi in terms of the other basis vectors, which is not
possible. Inductively we can also verify that eiAei = 1, and eiAej = 0 if i 6= j. This is
the Gram-Schmidt orthonormalization process - we exploit the property that any positive
definite matrix A gives rise to an inner product 〈x,y〉 = x′Ay.

Now consider the matrix Q =
(
e1 e2 . . . en

)
. Now if B = Q′AQ then bij = eiAej,

thus B = In. Since Q consists of linearly independent columns, it is invertible, and thus
A = Q′−1Q−1. Setting P = Q′−1, we have A = PP′.

Question 5(a) If S is a skew symmetric matrix of order n and if I + S is non-singular,
then prove that A = (I− S)(I + S)−1 is an orthogonal matrix of order n.

Solution. See 1999, question 2(b).
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Question 5(b) Under what circumstances will the real n× n matrix

A =


x a a . . . a
a x a . . . a
a a x . . . a

. . .
a a a . . . x


be (1) positive semidefinite (2) positive definite.

Solution. The eigenvalues of the given matrix can be computed as follows:∣∣∣∣∣∣∣∣∣∣
x− λ a a . . . a
a x− λ a . . . a
a a x− λ . . . a

. . .
a a a . . . x− λ

∣∣∣∣∣∣∣∣∣∣
= 0

⇒

∣∣∣∣∣∣∣∣∣∣
x− λ a− x+ λ a− x+ λ . . . a− x+ λ
a x− λ− a 0 . . . 0
a 0 x− λ− a . . . 0

. . .
a 0 0 . . . x− λ− a

∣∣∣∣∣∣∣∣∣∣
= 0

⇒

∣∣∣∣∣∣∣∣∣∣
x− λ+ (n− 1)a 0 0 . . . 0

a x− λ− a 0 . . . 0
a 0 x− λ− a . . . 0

. . .
a 0 0 . . . x− λ− a

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (x− λ+ (n− 1)a)(x− λ− a)n−1 = 0

Thus the eigenvalues are x−a (repeated n−1 times) and x+ (n−1)a. For positive definite,
λ > 0 ⇒ x > a, x > (n − 1)(−a). If a > 0, this reduces to x > a, if a ≤ 0, this reduces to
x > (n− 1)(−a).

For positive semi-definite, λ ≥ 0. By the same reasoning, if a > 0, then x ≥ a, otherwise
x ≥ (n− 1)(−a).

9
For more information log on www.brijrbedu.org.

Copyright By Brij Bhooshan @ 2012.


