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Question 1(a) Sketch the ellipse C described in the complex plane by
z=Acos\t+iBsin\t,A > B

where t is a real variable and A, B, A are positive constants.
If C is the trajectory of a particle with z(t) as the position vector of the particle at time
t, identify with justification

1. the two positions where the velocity s minimum.

2. the two positions where the acceleration s mazximum.

2 2
Solution. We are given that x = Acos At,y = Bsin At which implies that % + % = 1.
Since A > B, it follows that it is the standard ellipse with 2A as the major axis and 2B as

the minor axis.
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1. The velocity v = % = —A)Xsin At + i B cos \t.

@
dt
= \/Az/\2 sin® Mt + B2)\2 cos2 \t
= A\/(42 - B?)sin? At + B2

Speed = magnitude of velocity =

Since A%2— B? > 0, the speed is minimum when sin® \t = 0 i.e. when z(t) = £A, y(t) =
0 i.e. when the particle is at the two ends of the major axis, the points A and A" in
the figure.

2

d
2. Acceleration = d_tj = —AMN? cos A\t — i B)\? sin \t.

Magnitude of acceleration = A/ A2 cos? At + B2sin® \t = \2\/(A2 — B2) cos? A\t + B2
Since A% — B? > 0, acceleration is maximum when cos? \t = 1 = cos A\t = £1 i.e. the
particle is at either end of the major axis, A or A’. (Note that acceleration is minimum
when cos? \t = 0 i.e. the particle is at either end of the minor axis).

Question 1(b) FEwvaluate lim #.
2—0 sin(22)

Solution. .
1—cosz _ 2sin*Z 2 (5)22 1
lim—— = lim———= = lim- =
2—0 sin(z?) 2—0 sin(22) 20 4 sin(z2) 2
Note that sin z has a simple zero at z = 0 and sin z = z¢(z) where ¢(z) is analytic and
sin z
»(0) =1, SOllLI(l) . = 1. [

sin+/z
\/_

Question 1(c) Show that z = 0 is not a branch point for the function f(z) = Is it

a removable singularity?

Solution. We know that w = /z is a multiple valued function and has two branches. Once
we fix a branch of w = /2, sin/z is analytic, and
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Thus lim 22 Y2 — 1, so z = 0 is not a branch point of the function f(z) = — \/E In fact
T Ve
z = 0 is a removable singularity of f(z). In fact
sin /z 0
1, z=0
is analytic everywhere once a branch of 1/z is specified. |

Question 2(a) Prove that every polynomial equation ag+ a1z + asz® + ...+ a,z" =0, a, #
0,n > 1 has exactly n roots.

Solution. Let P(z) = ag + a1z + a22® + ... + a,2". Suppose, if possible, that P(z) # 0

for any z € C. Let f(z) = then f(z) is an entire function i.e. f(z) is analytic in the

1
P(z)’
whole complex plane. We shall now show that f(z) is bounded.

(%)

Ay Ay
P(z):zn(an—i— Zl+ 2+...+—)

Zn

€ = % there exists R > 0

Zna
a;
such that |z] > R = ‘
Zn=J

Inl

for 0 < j < n. Thus

+ an—1 + Ap—2 + + 22 Qo > | | an Qp,
(07% N Ap| — N = | —
22 z m 2
and therefore
1 1 2
= = for |z] > R
£l = ‘ P(z) 2(an + 2 22 ) la, | R™ 12

Since |z| < R is a compact set and f(z) is analytic on it, f(z) is bounded on |z| < R.
Consequently f(z) is bounded on the whole complex plane. Now we use Liouville’s theorem
— If an entire function is bounded on the whole complex plane, then it is a constant. Thus
f(2) and therefore P(z) is a constant, which is not true, hence our assumption that P(z) # 0
for all z € C is false. So there is at least one z; € C where P(z;) = 0. (This result is called
the fundamental theorem of algebra.)

We now prove by induction on n that P(z) has n zeros. If n =1, P(z) = ag + a1z has
one zero namely z = —22.

Assume as induction hypothesis that any polynomial of degree n — 1 has n — 1 zeros. By
Euclid’s algorithm, , we get P;(z) and R(z) such that P(z) = (2 — 2z1)Pi(z) + R(z), where
R(z) = 0 or deg R(z) < 1 i.e. R(z) is a constant. Putting z = z; we get R(z) = 0, so
P(2) = (2 — z1)Pi(2). Since Pi(z) is a polynomial of degree n — 1, by induction hypothesis
it has n — 1 roots in C, and therefore P(z) has n roots in C.
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We now prove that P(z) has exactly n roots. Let z,29,..., 2, be the (not necessarily
P(z)

distinct) roots of P(z). Let g(z) = (z—2)(z—2)...(2 — 2)

. Clearly ¢(z) is analytic in

the whole complex plane. Since

P ap, + 222 4222 4+ %
lim g(z) = lim ) = z = = =an

2—00 oo (z—2)(z—22). . (2—2z) (1-2)1-2)...(1-2)

it follows that given € > 0 there exists R such that |g(z) — a,| < € for |z| > R, so g(z) is
bounded in the region |z| > R. The function g(z) being analytic is bounded in the compact
region |z| < R. Thus by Liouville’s theorem g(z) is a constant, in fact g(z) = a,, and
therefore

P(z)=an(z—2z1)(z — 29) ... (2 — zp)

Thus if ¢ is a zero of P(z), then ( = z; for some j, 1 < j < n. Thus P(z) has exactly n
Z€eroes. |

Alternate Proof: We shall use Rouche’s theorem — Let v be a simple closed rectifiable
curve. Let f(2), g(z) be analytic on and within . Suppose |g(z)| < |f(2)| on 7, then f(z)
and f(z) £ g(z) have the same number of zeroes inside 7.

Let f(2) = a,2™ and g(2) = a,_12" ' + ... + ag. Let R be so large that |g(2)| < |f(2)]
on |z| = R. Then f(z) and f(z) + g(z) = P(z) have the same number of zeroes within
|z| = R. But whatever R > 0 we take, f(z) has exactly n zeroes in |z| = R, therefore P(z)
has exactly n zeroes in C.

Note: Rouche’s theorem follows from the Argument Principle — Note that A, (arg(f(z)+

g(2))) =change in argument of f(z)+g(z) as z moves along v = A, arg f(z)+A, arg(1+%)

as f(z) # 0 along v. But A, arg(1+ %) = 0 because ]?8| < 1 and therefore % continues

to lie in the disc |[w — 1| < 1 as z moves on 7 i.e. does not go around the origin.

Question 2(b) By using the residue theorem, evaluate

o | 241
/ og,(z° + )dx
0

2+ 1
Solution.
| :
Let f(z) = % and we consider
log(z+i) in C—{z | 2z =iy,y < —1},
where it is single-valued. Let v be the con- r

tour consisting of the line joining (— R, 0) and
(R,0) and T', which is the arc of the circle of
radius R and center (0,0) lying in the upper
half plane. ~ is oriented counter-clockwise. (—R,0) (0,0) (R,0)
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Clearly f(z) has a simple pole at z = 7 in the upper half plane. The residue at z =i is

. (z+i)log(z+1i) log2i 1 o1 T T 1.

1 = = —log2e2 = —|log2+i-| =— — —ilog?2

s 2 g l08%e7 = gl 2+ i) =~ gilog
Thus by Cauchy’s residue theorem

1 ' 1 ' > 1 ' 1
hm/mz hm/m+/ 1082 +) g — omi[™ — Litog 2]

R—00 1+ 22 1+ 22 o 1422

as z = x on the real axis.

1 )
We shall now show that lim M

/ log(z+1)| /7r log(Re™ + i) Rie'
ro1+2z? 0

=0.O0nT, z=Re?, so

- R2e2i0 4 1
Now |R%¢*® 4+ 1| > R? — 1,log(Re” + i) = log Re" + log(1 + 757). Clearly |log Re®| =
|log R+ i6| < log R + 7 and therefore

; log(1
/log(z+z) S/ (m+1log R)R i+ / R| og + mem )| 50
r 1+22 0

d@’

R2—1 _1
Sincew *Oandw 0 as R — o0, it follows that lim M =
0 R?—1 RZ—1 dim | =
| Thus . | 2
/_m%dz’—wng—ki%

Equating real and imaginary parts, we get

/ log(1 + z?) dp — %/ log(1 4 z*) dp — %/ log(x + 7) + log(z — 7) i
0 — _

1+ 22 1+ 22 1+ 22

1
= 5[27rlog2] = mlog2

o0 [e.o]

1
Question 2(c) Find the Laurent expansion of f(z) = (z — 3) sin( n
z

larity z = —2. Specify the region of convergence and the nature of the singularity at z = —2.

2) about the singu-

Solution. It is well known that

Sin(zj—Q) N Z((Z;flzl)!(zj—2)2k_l

k=1

= (z—S)sin(Zi2> = (ZJFQ)Sin(ZiQ) _5Sin<z}r2)

= (2+2) Z; ((2—1611 1), <Zi2>2k1 B 5; ((2—]{:12 1)' (Z i 2>2k1

k

_ Z . _ (_1)k—1 . _ 5(_1)k—1
(z + 2 T kD MY 2k — 1)

[e.9]

k=0
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The region of convergence of the series is 0 < |z + 2| < co. The Laurent expansion shows
that the function has an essential singularity at z = —2 — this also follows from the fact
that lim,_, sin% does not exist. [ |
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