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Question 1(a) Suppose that z is the position vector of a particle moving on the ellipse
C : z =acoswt+ibsinwt where w, a, b are positive constants, a > b and t is time. Determine
where

1. the velocity has the greatest magnitude.

2. the acceleration has the least magnitude.

Solution. See 1996, question 1(a). [

Question 1(b) How many zeroes does the polynomial p(z) = 2* + 22% + 32 + 4 possess (i)
in the first quadrant, (i) in the fourth quadrant.

Solution.

1. p(—1) =0. p(—2) = =2 < 0,p(—3) = 22 > 0, therefore the intermediate value theorem
shows that there exists x, —3 < x < —2 such that p(z) = 0. Thus we have determined
that to zeros of p(z) lie on the negative real axis, and since p is a polynomial of degree
4 and hence has 4 zeros, we are left with the task of locating the the remaining two
Zeros.

2. p(z) has no zeros on the positive real axis because p(z) > 0 when z > 0.

3. p(z) has has no zero on the imaginary axis because p(iy) = y* + 4 — 2iy® + 3iy = 0 =
y* +4=0,2y% — 3y = 0, but y* + 4 = 0 has no real zeros, so p(iy) # 0.
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B(0, R)
We now consider the contour OABO
where OA is straight line joining (0,0) and
(R,0), AB is the arc of the circle x*+y* = R?
in the first quadrant, and BO is the line join-

ing (0, R) to (0,0). 0(0,0) A(R,0)

By the Argument Principle, the number of zeros of p(z) in the first quadrant = %x
(the change in the argument of p(z) when z moves along the contour OABO oriented anti-
clockwise as R — 00).

Change in the argument along OA: On OA, p(z) = 2+ 223+ 3x+4 > 0 = argp(z) = 0
for every x on OA. Therefore as z moves from O to A, the change in the argument of p(z)
i.e. Apaargp(z) =0.

Change in the argument along BO: On BO, z = iy and p(z) = y* + 4 +i(3y — 23).

3y — 293
Therefore arg p(z) = tan™! <H>
3y — 22\ 1°
u)} —0-0=0

A =t *1(
poargp() = tan~! (%

e}

Change in argument along AB: On arc AB, z = Re?®, 0 < 0 < 5 so that

2 3 4

4 4460
Reit + R3e3i0 + Righio Re

p(2) = R1eY 1 9R%¥ 1 3Rei® 4 4 = Rie? [1 n

as R — oo. Thus Aypargp(z) = 49}0g =27}
Hence Apapo argp(z) = 2w as R — 00, so p(z) has exactly one zero in the first quadrant.
Since p(z) is a polynomial with real coefficients, it follows that if ¢ is a zero of p(z) and
it lies in the first quadrant, then  is also a zero of p(z) and it lies in the fourth quadrant.
Thus p(z) has one zero in each of the first and the fourth quadrants. |

Question 1(c) Test for uniform convergence in the region |z| < 1 the series
o0
cosnz
>

n=1

Solution. By definition

einz + e—inz e—nyeina: + enye—inx
cosnz = =
2 2

! Alternately, p(z) = z* (1 +24+ 3+ ;%) =241+ w) where w = 2 4+ 3 + 4. Clearly w — 0 as R — oc.
Therefore |[1+w—1| < e for |z| large. This means 14w remains inside a circle of radius 1 as z moves along AB
and R — oco. Therefore A gp arg(1 +w) =0 and Aapp(z) = Aapzt + Aap(1+w) = 4Aspz =4 - T =2m.
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and therefore

i cosnz 2, e"Weine eWenT
3 Z m3 N3

n=1 n n=1 n n=1 "
Case 1: y > 0.

oo _ ;. (o)

e~ pine < 1
Z 2n3 - 2n3
n=1 n=1

showing that the first term is absolutely convergent.

nyefinx
But the second term is not convergent, because its n-th term o5 4 0asn— oo
n
enyefinx
— in fact — 00 as n — 0o when y > 0.
2n3
cosnz
Therefore Z is not even convergent when y > 0.
Case 2: y < O This case is entlrely analogous to the above case — the first term

e e~ ezn;v

Z o5 is not convergent, so Z
n

n=1 n=1

is not convergent.

cosnx
Case 3: y = 0. Z is uniformly and absolutely convergent, because of Weierstrass

n=1
M-test, which states that if > 7 | f,(2) is a series and there exist positive constants M, such
that |f,(z)| < M, for every z € Q and > M, is convergent, then Y > f,(z) is absolutely
and uniformly convergent in ). Here M,, = # for all x.
Thus the given series converges uniformly only on the real axis in |z| < 1. [ |

Question 2(a) Find the Laurent series for

2z
1. _c about z = 1.

(z—1)

1
2. m about Z = 3

Solution.

1. The function e?* is analytic everywhere in the complex plane. The Taylor series of e2*

with center z = 1 is given by

oo dre 2z

Zdn atz—lz_1 iQ:;Qz—l
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e e n 2¢? n 4e? n i 2ne?
(z—1)3 (z—=1)2  (z2—=1)2 2l(z—-1)
e? N 2¢? N 4e? N (1)
= — (2 —
)3 —1)2 _
(z—1)3 (=12 2i(z—-1) “ (n+3)!

n—

2z
e
which is the required Laurent series of ————— with center z = 1. It is valid in the

(2 =1)°
ring 1 < |z] < o0.
2. Let f(z) = % then

(—=2)(=3)...(—n—1)

f/(z) :_;7 f//(z):T7,f(n)(Z>: Zn+2
and therefore
1 2 " (=1)*(n+1)!
fB8) =5 '(3) :—ﬁ,,,,,f( '3) = BT
Thus the Taylor series of f(z) with center z = 3 is given by
L D"+ D) n N~ DA n
2 Z 32y (2 —3)" = Z Jn+2 (2 =3)
n=0 n=0
Thus
1 = (—1)"(n+1) L 1 2 — (—1)™(m +3)
- AV S v n _ _ -3 m
2(z — 3)? ; gz 73 32(z—3)2 33(z—3) +mzo grer 73
is the required Laurent series of m with center z = 3 valid in 0 < |z| < 3.

Question 2(b) Find the residues of f(z) = e csc® z at all its poles in the finite plane.

Solution. The poles are at zeros of sinz, and sin®?z = 0 iff 2 = nw,n € Z, the set of
integers. All these poles are double poles.

1 d ((z—nm)?e
Residue at z = nm of f(2) is —— <M> . Now

11dz sin? 2
d ((z—nm)%e*\  sin®z[(z — nm)?e* 4 2(z — nw)e?] — (z — nw)?e*2sin z cos z
dz sin? 2 B sin? 2
= e(Zi—_:_,’nﬂ)((Z—mr)sinz—i—Qsinz—2(z—n7r)cosz)
sin® 2
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Z—nm 1

Using lim — = = (—1)", we get
z—nm SN 2 cosnm
d _ 2,z o
— (W) = " lim w ((z — nm) sin z 4 2sin z — 2(z — nm) cos 2)
dz sin” z R z—nm o sin” 2z

= "(—1)" lim (

z—nm)(sinz —2cos z) + 2sin z

Z—nm sin2 z

sinz — 2cosz + (2 — nm)(cos z 4+ 2sin z) + 2 cos z

z—nm 2sin z cos z
_ g gy SRET (z — nm)(cos z + 2sin 2)
z—n 2sin z
wr . COSZA4cosz+2sinz 4+ (2 —nmw)(—sinz + 2cos z)
= €"" lim
z—nm 2cos z
— €n7r

Thus the residue at z = nm of e* csc? z is e™".
Question 2(c) By means of contour integration evaluate / (
0

Solution.

We take f(z) = % and the contour
C' consisting of the line joining (—R,0) to
(—7,0), the semicircle «y of radius r with cen-
ter (0,0), the line joining (r,0) to (R,0) and
I a semicircle of radius R with center (0, 0).
The contour lies in the upper half plane and
is oriented anticlockwise. We have avoided
the branch point z = 0 of the multiple valued

function log z.

(Eventually we shall let R — oo, — 0).
(1) On T, 2 = Re® and |1 + 22| > |2|> = 1 = R?* — 1. Thus

/F f(z)d= /0 ' MiRew d@‘

= R2—1
™ |log R + if)?
2o 2T 7l Rde
—/0 mo1 ¢

R i 2 o, R
= Rz—l/o((IOgR) +9)d9—R2_1

But w2~ (r(log R)? + =) — 0 as R — oo, therefore

R—o0

lim /Ff(z) dz =0
)

log, u)?
w2 +1

du.

A(—R,0) B(-r,0) C(r,0)

(ﬂ(log R)? + %3>
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(2) Ony, z=re? |z?+1>1—|2]>=1—r2 Thus

2 3
‘ / (logr)” +9 VOB Y g =" (ﬂ(logr)2—l—%>

1—172 1—172

But the right side — 0 as r — 0, it follows that lir%/f(z) dz = 0.

N
(3) f(2) has a simple pole at z = i in the the upper half plane (inside C') and the residue
2 .

log 7)? 1 1\ 2
at z =1 of f(2) isM:—_(W—Z) ="' Thus
21 20\ 2 8

R r
R_}l;glﬁ_}()/cf(z) dz:Rﬁl;Or?HO/r f(x)dx—l—/R f(ze™) dze'™ =

because on the line CD, z = z, and on the line AB, z = xe™. Hence

01 1)\ 2 % (] 2 3
_/ Mdﬁ/ %dx:_ﬂ_
o 14 xes™ o l+=z 4

Now (log(ze™))? = (logx)? — 72 + 2iw log x, s0

[e'e) 1 2 [e's} d [e's) 1 3
2/ (log 7) dx—ﬂ2/ a —|—2i7r/ o8 dx:—ﬂ—
o 1422 o 1422 o 1422 4

oo d %)
Equating real parts, and noting that / 1—962 = tan! x} = E, we get
0 +x 0
 [leesry, 2 _m_w
o 1422 2 4 4
(] 2 3
so that / (log ) de = =
o l+2a2 8
1
Note that by equating imaginary parts, we get / l?l’—ng dz = 0. |
0 x
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