
UPSC Civil Services Main 1994 - Mathematics
Complex Analysis

Question 1(a) Suppose that z is the position vector of a particle moving on the ellipse
C : z = a cosωt+ib sinωt where ω, a, b are positive constants, a > b and t is time. Determine
where

1. the velocity has the greatest magnitude.

2. the acceleration has the least magnitude.

Solution. See 1996, question 1(a).

Question 1(b) How many zeroes does the polynomial p(z) = z4 + 2z3 + 3z + 4 possess (i)
in the first quadrant, (ii) in the fourth quadrant.

Solution.

1. p(−1) = 0. p(−2) = −2 < 0, p(−3) = 22 > 0, therefore the intermediate value theorem
shows that there exists x,−3 < x < −2 such that p(x) = 0. Thus we have determined
that to zeros of p(z) lie on the negative real axis, and since p is a polynomial of degree
4 and hence has 4 zeros, we are left with the task of locating the the remaining two
zeros.

2. p(z) has no zeros on the positive real axis because p(x) > 0 when x ≥ 0.

3. p(z) has has no zero on the imaginary axis because p(iy) = y4 + 4− 2iy3 + 3iy = 0⇒
y4 + 4 = 0, 2y3 − 3y = 0, but y4 + 4 = 0 has no real zeros, so p(iy) 6= 0.
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We now consider the contour OABO
where OA is straight line joining (0, 0) and
(R, 0), AB is the arc of the circle x2+y2 = R2

in the first quadrant, and BO is the line join-
ing (0, R) to (0, 0). A(R, 0)

B(0, R)

O(0, 0)

By the Argument Principle, the number of zeros of p(z) in the first quadrant = 1
2π
×

(the change in the argument of p(z) when z moves along the contour OABO oriented anti-
clockwise as R→∞).

Change in the argument along OA: On OA, p(z) = x4 + 2x3 + 3x+ 4 > 0⇒ arg p(z) = 0
for every x on OA. Therefore as z moves from O to A, the change in the argument of p(z)
i.e. ∆OA arg p(z) = 0.

Change in the argument along BO: On BO, z = iy and p(z) = y4 + 4 + i(3y − 2y3).

Therefore arg p(z) = tan−1
(3y − 2y3

y4 + 4

)
.

∆BO arg p(z) = tan−1
(3y − 2y3

y4 + 4

)]0

∞
= 0− 0 = 0

Change in argument along AB: On arc AB, z = Reiθ, 0 ≤ θ ≤ π
2
, so that

p(z) = R4e4iθ + 2R3e3iθ + 3Reiθ + 4 = R4e4iθ
[
1 +

2

Reiθ
+

3

R3e3iθ
+

4

R4e4iθ

]
−→ R4e4iθ

as R→∞. Thus ∆AB arg p(z) = 4θ
]π

2

0
= 2π.1

Hence ∆OABO arg p(z) = 2π as R→∞, so p(z) has exactly one zero in the first quadrant.
Since p(z) is a polynomial with real coefficients, it follows that if ζ is a zero of p(z) and

it lies in the first quadrant, then ζ is also a zero of p(z) and it lies in the fourth quadrant.
Thus p(z) has one zero in each of the first and the fourth quadrants.

Question 1(c) Test for uniform convergence in the region |z| ≤ 1 the series

∞∑
n=1

cosnz

n3

Solution. By definition

cosnz =
einz + e−inz

2
=
e−nyeinx + enye−inx

2

1Alternately, p(z) = z4
(

1 + 2
z + 3

z3 + 4
z4

)
= z4(1 +w) where w = 2

z + 3
z3 + 4

z4 . Clearly w → 0 as R→∞.
Therefore |1+w−1| < ε for |z| large. This means 1+w remains inside a circle of radius 1 as z moves along AB
and R→∞. Therefore ∆AB arg(1 + w) = 0 and ∆ABp(z) = ∆ABz

4 + ∆AB(1 + w) = 4∆ABz = 4 · π2 = 2π.
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and therefore
∞∑
n=1

cosnz

n3
=
∞∑
n=1

e−nyeinx

2n3
+
∞∑
n=1

enye−inx

2n3

Case 1: y > 0.
∞∑
n=1

∣∣∣∣e−nyeinx2n3

∣∣∣∣ ≤ ∞∑
n=1

1

2n3

showing that the first term is absolutely convergent.

But the second term is not convergent, because its n-th term

∣∣∣∣enye−inx2n3

∣∣∣∣ 6→ 0 as n→∞

— in fact

∣∣∣∣enye−inx2n3

∣∣∣∣→∞ as n→∞ when y > 0.

Therefore
∞∑
n=1

cosnz

n3
is not even convergent when y > 0.

Case 2: y < 0. This case is entirely analogous to the above case — the first term
∞∑
n=1

e−nyeinx

2n3
is not convergent, so

∞∑
n=1

cosnz

n3
is not convergent.

Case 3: y = 0.
∞∑
n=1

cosnx

n3
is uniformly and absolutely convergent, because of Weierstrass

M-test, which states that if
∑∞

n=1 fn(z) is a series and there exist positive constants Mn such
that |fn(z)| < Mn for every z ∈ Ω and

∑
nMn is convergent, then

∑∞
n=1 fn(z) is absolutely

and uniformly convergent in Ω. Here Mn = 1
n3 for all x.

Thus the given series converges uniformly only on the real axis in |z| ≤ 1.

Question 2(a) Find the Laurent series for

1.
e2z

(z − 1)3
about z = 1.

2.
1

z2(z − 3)2
about z = 3.

Solution.

1. The function e2z is analytic everywhere in the complex plane. The Taylor series of e2z

with center z = 1 is given by

e2z =
∞∑
n=0

dne2z

dzn
at z = 1

n!
(z − 1)n =

∞∑
n=0

2ne2

n!
(z − 1)n
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because
dne2z

dzn
= 2ne2z. Thus

e2z

(z − 1)3
=

e2

(z − 1)3
+

2e2

(z − 1)2
+

4e2

2!(z − 1)
+
∞∑
n=3

2ne2

n!
(z − 1)n−3

=
e2

(z − 1)3
+

2e2

(z − 1)2
+

4e2

2!(z − 1)
+
∞∑
n=0

2n+3e2

(n+ 3)!
(z − 1)n

which is the required Laurent series of
e2z

(z − 1)3
with center z = 1. It is valid in the

ring 1 < |z| <∞.

2. Let f(z) = 1
z2

then

f ′(z) = − 2

z3
, f ′′(z) =

(−2)(−3)

z4
, . . . , f (n)(z) =

(−2)(−3) . . . (−n− 1)

zn+2

and therefore

f(3) =
1

32
, f ′(3) = − 2

33
, . . . , f (n)(3) =

(−1)n(n+ 1)!

3n+2

Thus the Taylor series of f(z) with center z = 3 is given by

1

z2
=
∞∑
n=0

(−1)n(n+ 1)!

3n+2n!
(z − 3)n =

∞∑
n=0

(−1)n(n+ 1)

3n+2
(z − 3)n

Thus

1

z2(z − 3)2
=
∞∑
n=0

(−1)n(n+ 1)

3n+2
(z−3)n−2 =

1

32(z − 3)2
− 2

33(z − 3)
+
∞∑
m=0

(−1)m(m+ 3)

3m+4
(z−3)m

is the required Laurent series of 1
z2(z−3)2

with center z = 3 valid in 0 < |z| < 3.

Question 2(b) Find the residues of f(z) = ez csc2 z at all its poles in the finite plane.

Solution. The poles are at zeros of sin2 z, and sin2 z = 0 iff z = nπ, n ∈ Z, the set of
integers. All these poles are double poles.

Residue at z = nπ of f(z) is
1

1!

d

dz

(
(z − nπ)2ez

sin2 z

)
z=nπ

. Now

d

dz

(
(z − nπ)2ez

sin2 z

)
=

sin2 z[(z − nπ)2ez + 2(z − nπ)ez]− (z − nπ)2ez2 sin z cos z

sin4 z

=
ez(z − nπ)

sin3 z

(
(z − nπ) sin z + 2 sin z − 2(z − nπ) cos z

)
4
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Using lim
z→nπ

z − nπ
sin z

=
1

cosnπ
= (−1)n, we get

d

dz

(
(z − nπ)2ez

sin2 z

)
z=nπ

= enπ lim
z→nπ

(z − nπ)

sin3 z

(
(z − nπ) sin z + 2 sin z − 2(z − nπ) cos z

)
= enπ(−1)n lim

z→nπ

(z − nπ)(sin z − 2 cos z) + 2 sin z

sin2 z

= enπ(−1)n lim
z→nπ

sin z − 2 cos z + (z − nπ)(cos z + 2 sin z) + 2 cos z

2 sin z cos z

= enπ lim
z→nπ

sin z + (z − nπ)(cos z + 2 sin z)

2 sin z

= enπ lim
z→nπ

cos z + cos z + 2 sin z + (z − nπ)(− sin z + 2 cos z)

2 cos z
= enπ

Thus the residue at z = nπ of ez csc2 z is enπ.

Question 2(c) By means of contour integration evaluate

∫ ∞
0

(loge u)2

u2 + 1
du.

Solution.

We take f(z) = (log z)2

z2+1
and the contour

C consisting of the line joining (−R, 0) to
(−r, 0), the semicircle γ of radius r with cen-
ter (0, 0), the line joining (r, 0) to (R, 0) and
Γ a semicircle of radius R with center (0, 0).
The contour lies in the upper half plane and
is oriented anticlockwise. We have avoided
the branch point z = 0 of the multiple valued
function log z.

Γ

γ

D(R, 0)A(−R, 0) B(−r, 0) C(r, 0)

(Eventually we shall let R→∞, r → 0).
(1) On Γ, z = Reiθ and |1 + z2| ≥ |z|2 − 1 = R2 − 1. Thus∣∣∣∣∫

Γ

f(z) dz

∣∣∣∣ ≤ ∣∣∣∣∫ π

0

(
log(Reiθ)

)2

R2 − 1
iReiθ dθ

∣∣∣∣
≤

∫ π

0

| logR + iθ|2

R2 − 1
Rdθ

=
R

R2 − 1

∫ π

0

((logR)2 + θ2) dθ =
R

R2 − 1

(
π(logR)2 +

π3

3

)
But R

R2−1

(
π(logR)2 + π3

3

)
→ 0 as R→∞, therefore

lim
R→∞

∫
Γ

f(z) dz = 0
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(2) On γ, z = reiθ, |z|2 + 1 ≥ 1− |z|2 = 1− r2. Thus∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ∫ 0

π

(log r)2 + θ2

1− r2
r dθ =

r

1− r2

(
π(log r)2 +

π3

3

)
But the right side → 0 as r → 0, it follows that lim

r→0

∫
γ

f(z) dz = 0.

(3) f(z) has a simple pole at z = i in the the upper half plane (inside C) and the residue

at z = i of f(z) is
(log i)2

2i
=

1

2i

(πi
2

)2

=
π2i

8
. Thus

lim
R→∞,r→0

∫
C

f(z) dz = lim
R→∞,r→0

∫ R

r

f(x) dx+

∫ r

R

f(xeiπ) dxeiπ = 2πi
π2i

8

because on the line CD, z = x, and on the line AB, z = xeiπ. Hence

−
∫ 0

∞

(log(xeiπ))2

1 + x2e2πi
dx+

∫ ∞
0

(log x)2

1 + x2
dx = −π

3

4

Now (log(xeiπ))2 = (log x)2 − π2 + 2iπ log x, so

2

∫ ∞
0

(log x)2

1 + x2
dx− π2

∫ ∞
0

dx

1 + x2
+ 2iπ

∫ ∞
0

log x

1 + x2
dx = −π

3

4

Equating real parts, and noting that

∫ ∞
0

dx

1 + x2
= tan−1 x

]∞
0

=
π

2
, we get

2

∫ ∞
0

(log x)2

1 + x2
dx =

π3

2
− π3

4
=
π3

4

so that

∫ ∞
0

(log x)2

1 + x2
dx =

π3

8
.

Note that by equating imaginary parts, we get

∫ ∞
0

log x

1 + x2
dx = 0.
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