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Question 1(a) Ifu = e *(xsiny —ycosy), find v such that f(z) = u+iv is analytic. Also
find f(z) explicitly as a function of z.

Solution. See 1993, question 2(b). i

Question 1(b) Let f(z) be analytic inside and on the circle C' defined by |z| = R and let
re? be any point inside C'. Prove that
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Solution. By Cauchy’s integral formula
» 1 f(¢)
f(z) = f(re”) = — dc¢ 1
@ =t =ss [ (1)
We note that the function % has no singularity within and on Cpg, because f(() is

z
analytic within and on Cg and (¢ — %2)_1 is also analytic within and on Cj as %2 lies

outside C'r and therefore ( — R; # 0 (Note that R? = R+ R > R|z|, because |z| = r < R,
thus |R;| > R. Thus by Cauchy’s theorem
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as required. .

Question 1(c) Prove that all the roots of 2" — 52° + 12 = 0 lie between the circles |z| =1
and |z| = 2.

Solution. See 2006 question 2(b). [
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Question 2(a) Find the region of convergence of the series whose n-th term is W
n—1)!

Solution. Clearly

—0asn— o0

‘Coefﬁcient of the (n + 1)-th term|  (2n — 1)!

Coeflicient of the n-th term  (2n+1)!
Thus lim |Coefﬁcient of the n-th term|% = 0. So the radius of convergence of the power
n—>oo
n 1 2n 1
series Z 2 i is 00, i.e. the region of convergence is the entire complex plane. B
n —
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Question 2(b) FEzpand f(z) = GCrD)GEL3)

12| < 3, (i) |2] < 1.

in a Laurent series valid for (i) |z| > 3, (i1) 1 <

Solution. (i) |z| > 3.

-3 (i 13) -0+ D -0+

Since |1| < §,]2| < 1, we have

R e e

(17) 1 < |z| < 3.

Since |1 < 1, |2 < 1, we get

f(z) = iz“”’l%zﬂ

2z e 2" e 3n
0 n 0 n+1.n
D
(iii) |2| < 1. Do 1
fer=5(1+2) —53(1+3)

As |z] < 1,|3] < 1, we get

1) = g3y -y

n=0 n=0
- %ZO<_1)H< - 3n1+1>zn
These are the Laurent or Taylor series in the required three cases. |
Question 2(c) By integrating along a suitable contour evaluate /000 C;S_Tf x
Solution. See 1995, question 2(a). [
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