UPSC Civil Services Main 1985 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) Prove that every power series represents an analytic function within its circle of convergence.

Solution. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have R as its radius of convergence. We shall show that for

any z in the region $C = \{z : |z| < R\}, f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1}$. We first of all note that the

radius of convergence of the series $\sum_{n=1}^{\infty} na_n z^{n-1}$ is also R as $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

Let $z \in C$ and $|z| < \rho < R$ and let h be chosen so small that $|z| + |h| \le \rho < R$. Thus

$$\left| \frac{(z+h)^n - z^n}{(z+h) - z} \right| \le (|z| + |h|)^{n-1} + |z|(|z| + |h|)^{n-2} + \dots + |z|^{n-1} \le n\rho^{n-1}$$
 (1)

Since the series $\sum_{n=1}^{\infty} n a_n \rho^{n-1}$ is convergent, given $\epsilon > 0 \; \exists N_1 > 0$ such that

$$\left| \sum_{r=n+1}^{\infty} r |a_r| \rho^{r-1} \right| < \frac{\epsilon}{3} \text{ for } n \ge N_1$$

and in particular $\sum_{N=1}^{\infty} r|a_r|\rho^{r-1} < \frac{\epsilon}{3}.$ (2)

Since $\lim_{h\to 0} \left[a_n \frac{(z-h)^n - z^n}{h} - na_n z^{n-1} \right] = 0$, given $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left| \sum_{n=1}^{N_1} \left[a_n \frac{(z-h)^n - z^n}{h} - na_n z^{n-1} \right] \right| < \frac{\epsilon}{3} \text{ for } |h| < \delta$$
 (3)

Now

$$\left| \frac{f(z+h) - f(z)}{h} - \sum_{n=1}^{\infty} n a_n z^{n-1} \right|$$

$$\leq \left| \sum_{n=1}^{N_1} \left[a_n \frac{(z+h)^n - z^n}{h} - n a_n z^{n-1} \right] \right| + \sum_{n=N_1+1}^{\infty} \frac{|a_n ((z+h)^n - z^n)|}{h} + \sum_{n=N_1+1}^{\infty} |n a_n z^{n-1}|$$

$$= \frac{\epsilon}{3} + \sum_{n=N_1+1}^{\infty} |a_n| n \rho^{n-1} + \sum_{n=N_1+1}^{\infty} |a_n| n \rho^{n-1} \quad \text{for } |h| < \delta$$

$$\leq \epsilon$$

Thus
$$\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = \sum_{n=1}^{\infty} na_n z^{n-1} = f'(z)$$
, so $f(z)$ is analytic in C .

Question 1(b) Prove that the derivative of a function analytic in a domain is itself an analytic function.

Solution. Cauchy's integral formula states that if f(z) is analytic within and on a simple closed countour C oriented positively and if z_0 is any interior point of C, then $f(z_0) =$

Let f(z) be differentiable in a domain D and $z_0 \in D$. Let C be a circle with center z_0 , the boundary of which is positively oriented, such that f(z) is differentiable within and on C, and C along with its interior lies in D. Then by Cauchy's integral formula, $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{z - z_0}.$ Let $h \in \mathbb{C}$ be so small that $z_0 + h$ also lies in the interior of C.

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i h} \int_C \left(\frac{f(z)}{z - z_0 - h} - \frac{f(z)}{z - z_0} \right) dz$$

$$= \frac{1}{2\pi i h} \int_C \frac{hf(z) dz}{(z - z_0 - h)(z - z_0)}$$

$$= \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0 - h)(z - z_0)}$$

Now

$$\frac{f(z_0 + h) - f(z_0)}{h} - \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^2}
= \frac{1}{2\pi i} \int_C \left(\frac{f(z)}{(z - z_0 - h)(z - z_0)} - \frac{f(z)}{(z - z_0)^2} \right) dz
= \frac{1}{2\pi i} \int_C \frac{hf(z) dz}{(z - z_0 - h)(z - z_0)^2}$$

Let $M = \sup_{z \in C} |f(z)|, l = \text{length of } C, d = \min_{z \in C} |z - z_0|, d > 0$. Since we are interested in $h \to 0$, we could have assumed in the beginning itself that 0 < |h| < d. Thus we get

$$\left| \frac{f(z_0 + h) - f(z_0)}{h} - \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{(z - z_0)^2} \right| \le \frac{M|h|l}{2\pi d^2 (d - |h|)}$$

Since the right hand side of the above inequality tends to 0 as $h \to 0$, it follows that

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^2}$$

i.e. f(z) is differentiable at z_0 and since z_0 is an arbitrary point of D, it follows that

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta) \, d\zeta}{(\zeta - z)^2}$$

where C is any positively oriented circle containing z in its interior.

We shall now prove that

$$f''(z_0) = \frac{2!}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^3}$$

where z_0, C are as chosen above. Let h be also chosen as above. Then

$$\frac{f'(z_0 + h) - f'(z_0)}{h} - \frac{2!}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^3} \\
= \frac{1}{2\pi i h} \int_C f(z) \left[\frac{1}{(z - z_0 - h)^2} - \frac{1}{(z - z_0)^2} - \frac{2h}{(z - z_0)^3} \right] dz \\
= \frac{1}{2\pi i h} \int_C f(z) \frac{(z - z_0)^3 - (z - z_0 - h)^2 (z - z_0) - 2h(z - z_0 - h)^2}{(z - z_0 - h)^2 (z - z_0)^3} dz \\
\text{Now} \qquad (z - z_0)^3 - (z - z_0 - h)^2 (z - z_0) - 2h(z - z_0 - h)^2 \\
= (z - z_0)[(z - z_0)^2 - (z - z_0 - h)^2] - 2h[(z - z_0)^2 - 2h(z - z_0) + h^2] \\
= (z - z_0)h[2(z - z_0) - h] - 2h(z - z_0)^2 + 4h^2(z - z_0) - 2h^3 \\
= h[2(z - z_0)^2 - h(z - z_0) - 2(z - z_0)^2 + 4h(z - z_0) - 2h^2] \\
= h^2[3(z - z_0) - 2h]$$

Thus we get

$$\left| \frac{f'(z_0 + h) - f'(z_0)}{h} - \frac{2!}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^3} \right| \le \frac{M|h|(3\rho + 2|h|^2)l}{2\pi d^3 (d - |h|)^2}$$

where M, d, ρ are as before. Since the right hand side of the above inequality tends to 0 as $h \to 0$, it follows that

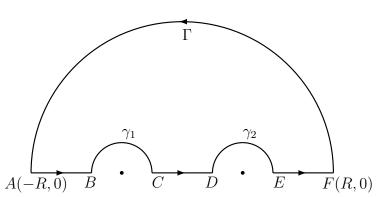
$$f''(z_0) = \lim_{h \to 0} \frac{f'(z_0 + h) - f'(z_0)}{h} = \frac{2!}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^3}$$

i.e. f'(z) is also analytic in D.

Question 1(c) Evaluate by the method of contour integration $\int_0^\infty \frac{x \sin ax}{x^2 - b^2} dx$.

Solution. We take $f(z) = \frac{ze^{iaz}}{z^2-b^2}$ and the contour C consisting of the following

- 1. The line AB joining A = (-R, 0) and $B = (-b r_1, 0)$.
- 2. γ_1 , the semicircle $(x+b)^2+y^2=r_1^2$ lying in the upper half plane.
- 3. Line *CD* joining $C = (-b + r_1, 0)$ and $D = (b r_2, 0)$.
- 4. γ_2 , the semicircle $(x-b)^2+y^2=r_2^2$ lying in the upper half plane.
- 5. Line EF joining $E = (b + r_2, 0)$ and F = (R, 0).
- 6. Γ , the semicircle $x^2 + y^2 = R^2$ lying in A(-R, 0) the upper half plane.



Eventually we will let $R \to \infty$, $r_1, r_2 \to 0$. Now the integrand has no pole in the upper half plane, therefore

$$\lim_{\substack{R \to \infty \\ r_1 \to 0 \\ r_2 \to 0}} \int_C \frac{ze^{iaz} \, dz}{(z^2 - b^2)} = 0$$

1. On Γ ,

$$\left| \int_{\Gamma} \frac{ze^{iaz} \, dz}{(z^2 - b^2)} \right| \le \left| \int_{0}^{\pi} \frac{Re^{i} \theta e^{iaRe^{i\theta}}}{R^2 - b^2} Rie^{i\theta} \, d\theta \right|$$

because of Γ , $|z^2 - b^2| \ge |z|^2 - b^2 = R^2 - b^2$.

$$\left| \int_{\Gamma} \frac{ze^{iaz} \, dz}{(z^2 - b^2)} \right| \le \frac{R^2}{R^2 - b^2} \int_{0}^{\pi} e^{-aR\sin\theta} \, d\theta = \frac{2R^2}{R^2 - b^2} \int_{0}^{\frac{\pi}{2}} e^{-aR\sin\theta} \, d\theta$$

(We can double the integral and halve the limit, because $\sin(\pi - \theta) = \sin \theta$). Using Jordan's inequality $\sin \theta \ge \frac{2\theta}{\pi}$ for $0 \le \theta \le \frac{\pi}{2}$ we get

$$\left| \int_{\Gamma} \frac{z e^{iaz} \, dz}{(z^2 - b^2)} \right| \le \frac{2R^2}{R^2 - b^2} \int_{0}^{\frac{\pi}{2}} e^{-aR^{\frac{2\theta}{\pi}}} \, d\theta = \frac{2R^2}{R^2 - b^2} \left(\frac{1 - e^{-aR}}{2aR/\pi} \right) = \frac{\pi R(1 - e^{-aR})}{a(R^2 - b^2)}$$

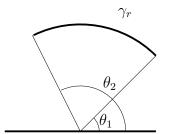
showing that $\lim_{R\to\infty} \int_{\Gamma} \frac{ze^{iaz} dz}{(z^2 - b^2)} = 0.$

2.

To get the value of the integral along γ_1, γ_2 we observe that if f(z) has a simple pole at z = a and γ_r is a part of a circle of radius r with center a, then

$$\lim_{r \to 0} \int_{\gamma_r} f(z) \, dz = ia_{-1}(\theta_2 - \theta_1)$$

where a_{-1} is the residue of f(z) at a.



Proof: Let

$$f(z) = \frac{a_{-1}}{z - a} + a_0 + a_1(z - a) + a_2(z - a)^2 + \dots = \frac{a_{-1}}{z - a} + \phi(z)$$

where $\phi(z)$ is analytic in the circle $|z-a| \leq r$. Thus

$$\left| \int_{\gamma_r} \phi(z) \, dz \right| \le Mr(\theta_2 - \theta_1)$$

where $M = \sup_{|z-a|=r} |\phi(z)|$. Thus $\lim_{r\to 0} \int_{\gamma_r} \phi(z) dz = 0$ and

$$\lim_{r \to 0} \int_{\gamma_r} f(z) \, dz = \int_{\gamma_r} \frac{a_{-1} \, dz}{z - a} = i \int_{\theta_1}^{\theta_2} a_{-1} \, d\theta = i a_{-1} (\theta_2 - \theta_1)$$

Now the residue of $\frac{ze^{iaz}}{z^2-b^2}$ at z=b is $\frac{1}{2}e^{iab}$, and the residue at z=-b is $\frac{1}{2}e^{-iab}$.

Thus $\lim_{r_1\to 0} \int_{\gamma_1} f(z) dz = \frac{1}{2} i e^{-iab} (0-\pi) = -\frac{i\pi}{2} e^{-iab}$ and $\lim_{r_2\to 0} \int_{\gamma_2} f(z) dz = \frac{1}{2} i e^{iab} (0-\pi) = -\frac{i\pi}{2} e^{iab}$.

Using the above data we get

$$0 = \lim_{\substack{R \to \infty \\ r_1 \to 0 \\ r_2 \to 0}} \int_C \frac{ze^{iaz} \, dz}{(z^2 - b^2)} = \int_{-\infty}^{\infty} \frac{xe^{iax} \, dx}{(x^2 - b^2)} - \frac{i\pi}{2} e^{-iab} - \frac{i\pi}{2} e^{iab}$$

or

$$\int_{-\infty}^{\infty} \frac{xe^{iax} dx}{(x^2 - b^2)} = \pi i \cos(ab)$$

Taking imaginary parts, we get

$$\int_{-\infty}^{\infty} \frac{x \sin ax \, dx}{(x^2 - b^2)} = \pi \cos(ab)$$

or

$$\int_0^\infty \frac{x \sin ax \, dx}{(x^2 - b^2)} = \frac{\pi \cos(ab)}{2}$$