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Question 1(a) If a function f(z) is analytic and bounded in the whole plane, show that
f(2) reduces to a constant. Hence show that every polynomial has a root.

Solution. See 1989, question 2(b) for the first part. See 1996 question 2(a) for the second
part. [ |

Question 1(b) Ewvaluate the following integrals by the method of residues.
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The integrand b2 205 10 has two simple poles at z; = 2 , 2y =
—a—- V-0 :
Since a > b > 0, |22] > 1, but |z125] = 1 so |z1] < 1 i.e. the
pole at z = z; lies within |z| < 1.
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Thus I = T
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1
. Let f(z2) = Zgiﬁf and the contour C' as
shown. =, is a circle of radius r oriented
clockwise, and g a circle of radius R ori-
ented anticlockwise. AB is along z-axis
on which z = x, CD is the line on which
z = ze?™. To avoid the branch point
of the multiple valued function log z, we
consider C— positive side of the z-axis.
We choose the branch of log z for which

log z = log |z| + 16,0 < § < 27.
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(a) Clearly f(z) has a double pole at z = —1. Residue of f(z) at z = —1 is
1 d [(z +1)226 log z}
( at z=1

1 dz z+1)2
1 1 6 ,
= {Zﬁ—i— =z 610gz} = %atz:e”r
6 at z=—1=¢e'™ 6z
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(b) On g, z = Re?, |z+1| > |2| -1 = R—1and |log 2| = | log Re¥| = |log R+if| <
logR+60 <logR+2mas 0 <60 < 27. Thus

26 log 2 ‘ /27r R (log R + 27) Rt
dz| < RdO = log R + 27
RESSi B Ay T R-12 )
. [RélogR  27Rs
Clearly i, {(R —12 T R-1)2

} = 0, and therefore

(c) On v, z=re? |z+1] >1—|2|] =1 —r and |log z| = |logre?| = |logr + if| <
logr 4+ 60 <logr+2m as 0 <6 < 2xr. Thus
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But lim [

r—0

} = 0, and therefore

By Cauchy’s residue theorem, using 1,2, 3, we get

- o 10g$ 0 (g 2m)610g( ¢27)
z%ggo/f ) dz = / (1+2)? d +/oo (1+x)? du

because on AB, z = x and on CD, z = ze?™. Therefore
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Equating real and imaginary parts, we get

1 :mlogx s o
\/_ x610gzv © 23 T
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Multiplying (1) by v/3 and adding

1
> x6logx 0 T
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Thus

In addition, multiplying (2) by v/3 and adding, we get

D=
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2 ——drx = —|6V3+3 —6v3
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giving us
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