UPSC Civil Services Main 1979 - Mathematics Complex Analysis

Brij Bhooshan

Asst. Professor

B.S.A. College of Engg & Technology

Mathura

Question 1(a) If a function f(z) is analytic and bounded in the whole plane, show that f(z) reduces to a constant. Hence show that every polynomial has a root.

Solution. See 1989, question 2(b) for the first part. See 1996 question 2(a) for the second part.

Question 1(b) Evaluate the following integrals by the method of residues.

1.

$$\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta \quad (a > b > 0)$$

2.

$$\int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} \, dx$$

Solution.

1. Let

$$I = \int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta = \frac{1}{2} \int_0^{2\pi} \frac{1 - \cos 2\theta}{a + b \cos \theta} d\theta$$

Let
$$I_1 = \frac{1}{2} \int_0^{2\pi} \frac{1}{a + b \cos \theta} d\theta$$
. Put $z = e^{i\theta}$ so that

$$I_1 = \frac{1}{2} \int_{|z|=1} \frac{dz}{iz(a + \frac{b}{2}(z + \frac{1}{2}))} = \frac{1}{i} \int_{|z|=1} \frac{dz}{bz^2 + 2az + b}$$

The integrand $\frac{1}{bz^2 + 2az + b}$ has two simple poles at $z_1 = \frac{-a + \sqrt{a^2 - b^2}}{b}$, $z_2 = \frac{-a - \sqrt{a^2 - b^2}}{b}$. Since a > b > 0, $|z_2| > 1$, but $|z_1 z_2| = 1$ so $|z_1| < 1$ i.e. the pole at $z = z_1$ lies within $|z| \le 1$.

Residue at z_1 is $\lim_{z \to z_1} \frac{z - z_1}{bz^2 + 2az + b} = \frac{1}{2bz_1 + 2a} = \frac{1}{2\sqrt{a^2 - b^2}}$. Thus $I_1 = 2\pi i \frac{1}{i} \frac{1}{2\sqrt{a^2 - b^2}} = \frac{\pi}{\sqrt{a^2 - b^2}}$. Let

$$I_2 = \frac{1}{2} \int_0^{2\pi} \frac{\cos 2\theta}{a + b \cos \theta} d\theta = \frac{1}{2} \operatorname{Re} \int_0^{2\pi} \frac{e^{2i\theta} d\theta}{a + b \cos \theta}$$

$$= \frac{1}{2} \operatorname{Re} \frac{1}{i} \int_{|z|=1} \frac{2z^2 dz}{bz^2 + 2az + b}$$

$$= \operatorname{Re} \frac{1}{i} \times 2\pi i \text{ Residue of } \frac{z^2}{bz^2 + 2az + b} \text{ at } z = z_1$$

$$= 2\pi \frac{1}{b} \frac{z_1^2}{z_1 - z_2}$$

Thus

$$I_{1} - I_{2} = \frac{2\pi}{b(z_{1} - z_{2})} - \frac{2\pi z_{1}^{2}}{b(z_{1} - z_{2})}$$

$$= \frac{2\pi}{2\sqrt{a^{2} - b^{2}}} (1 - z_{1}^{2})$$

$$= \frac{\pi}{\sqrt{a^{2} - b^{2}}} \left(1 - \frac{a^{2} - 2a\sqrt{a^{2} - b^{2}} + (a^{2} - b^{2})}{b^{2}}\right)$$

$$= \frac{\pi}{\sqrt{a^{2} - b^{2}}} \left(2\sqrt{a^{2} - b^{2}} \frac{a - \sqrt{a^{2} - b^{2}}}{b^{2}}\right)$$

Thus
$$I = \frac{2\pi}{a + \sqrt{a^2 - b^2}}$$
.

2. Let $f(z) = \frac{z^{\frac{1}{6}} \log z}{(1+z)^2}$ and the contour C as shown. γ_r is a circle of radius r oriented clockwise, and γ_R a circle of radius R oriented anticlockwise. AB is along x-axis on which z = x, CD is the line on which $z = xe^{2\pi i}$. To avoid the branch point of the multiple valued function $\log z$, we consider $\mathbb{C}-$ positive side of the x-axis. We choose the branch of $\log z$ for which $\log z = \log |z| + i\theta$, $0 < \theta \le 2\pi$.

(a) Clearly f(z) has a double pole at z=-1. Residue of f(z) at z=-1 is

$$\frac{1}{1!} \frac{d}{dz} \left[\frac{(z+1)^2 z^{\frac{1}{6}} \log z}{(z+1)^2} \right]_{at \ z=1}$$

$$= \left[\frac{z^{\frac{1}{6}}}{z} + \frac{1}{6} z^{-\frac{5}{6}} \log z \right]_{at \ z=-1=e^{i\pi}} = \frac{\log z + 6}{6 z^{\frac{5}{6}}} \ at \ z = e^{i\pi}$$

$$= \frac{\log e^{i\pi} + 6}{6 e^{\frac{5i\pi}{6}}} = \frac{i\pi + 6}{6} \left(\cos \frac{5\pi}{6} - i \sin \frac{5\pi}{6} \right)$$

$$= \frac{i\pi + 6}{6} \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i \right) = -\frac{1}{12} (6 + i\pi)(\sqrt{3} + i)$$

(b) On γ_R , $z = Re^{i\theta}$, $|z+1| \ge |z| - 1 = R - 1$ and $|\log z| = |\log Re^{i\theta}| = |\log R + i\theta| \le \log R + \theta \le \log R + 2\pi$ as $0 \le \theta \le 2\pi$. Thus

$$\left| \int_{\gamma_R} \frac{z^{\frac{1}{6}} \log z}{(1+z)^2} \, dz \right| \le \int_0^{2\pi} \frac{R^{\frac{1}{6}} (\log R + 2\pi)}{(R-1)^2} R \, d\theta = 2\pi \frac{R^{\frac{7}{6}}}{(R-1)^2} (\log R + 2\pi)$$

Clearly $\lim_{R\to\infty} \left[\frac{R^{\frac{7}{6}} \log R}{(R-1)^2} + \frac{2\pi R^{\frac{7}{6}}}{(R-1)^2} \right] = 0$, and therefore

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{z^{\frac{1}{6}} \log z}{(1+z)^2} dz = 0$$

(c) On γ_r , $z = re^{i\theta}$, $|z + 1| \ge 1 - |z| = 1 - r$ and $|\log z| = |\log re^{i\theta}| = |\log r + i\theta| \le \log r + \theta \le \log r + 2\pi$ as $0 \le \theta \le 2\pi$. Thus

$$\left| \int_{\gamma_r} \frac{z^{\frac{1}{6}} \log z}{(1+z)^2} \, dz \right| \le \int_0^{2\pi} \frac{r^{\frac{1}{6}} (\log r + 2\pi)}{(1-r)^2} r \, d\theta = 2\pi \frac{r^{\frac{7}{6}}}{(1-r)^2} (\log r + 2\pi)$$

But $\lim_{r\to 0} \left[\frac{r^{\frac{7}{6}} \log r}{(1-r)^2} + \frac{2\pi r^{\frac{7}{6}}}{(1-r)^2} \right] = 0$, and therefore

$$\lim_{r \to 0} \int_{\gamma_r} \frac{z^{\frac{1}{6}} \log z}{(1+z)^2} \, dz = 0$$

By Cauchy's residue theorem, using 1, 2, 3, we get

$$\lim_{\substack{R \to \infty \\ x \to 0}} \int_C f(z) \, dz = \int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} \, dx + \int_\infty^0 \frac{(xe^{2\pi i})^{\frac{1}{6}} \log(xe^{2\pi i})}{(1+x)^2} \, dx$$

because on $AB,\,z=x$ and on $CD,\,z=xe^{2\pi i}.$ Therefore

$$\int_{0}^{\infty} \frac{x^{\frac{1}{6}} \log x}{(1+x)^{2}} dx - \int_{0}^{\infty} \frac{x^{\frac{1}{6}} e^{\frac{2\pi i}{6}} (\log x + 2\pi i)}{(1+x)^{2}} dx = -\frac{2\pi i}{12} (6+i\pi)(\sqrt{3}+i)$$

$$\Rightarrow \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) \int_{0}^{\infty} \frac{x^{\frac{1}{6}} \log x}{(1+x)^{2}} dx - \int_{0}^{\infty} \frac{x^{\frac{1}{6}} (\frac{1}{2} + \frac{\sqrt{3}}{2}i)2\pi i}{(1+x)^{2}} dx = -\frac{\pi}{6} \left[-(6+\pi\sqrt{3}) + i(6\sqrt{3}-\pi) \right]$$

Equating real and imaginary parts, we get

$$\frac{1}{2} \int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} dx + \sqrt{3}\pi \int_0^\infty \frac{x^{\frac{1}{6}}}{(1+x)^2} dx = \frac{\pi}{6} (6+\pi\sqrt{3}) \tag{1}$$

$$-\frac{\sqrt{3}}{2} \int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} dx - \pi \int_0^\infty \frac{x^{\frac{1}{6}}}{(1+x)^2} dx = \frac{\pi}{6} (\pi - 6\sqrt{3})$$
 (2)

Multiplying (1) by $\sqrt{3}$ and adding

$$-\int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} dx = \frac{\pi}{6} \left[6 + \pi\sqrt{3} + \sqrt{3}\pi - 18 \right] = \frac{\pi}{6} \left[2\pi\sqrt{3} - 12 \right]$$

Thus

$$\int_0^\infty \frac{x^{\frac{1}{6}} \log x}{(1+x)^2} \, dx = 2\pi - \frac{\pi^2}{\sqrt{3}}$$

In addition, multiplying (2) by $\sqrt{3}$ and adding, we get

$$2\pi \int_0^\infty \frac{x^{\frac{1}{6}}}{(1+x)^2} dx = \frac{\pi}{6} \left[6\sqrt{3} + 3\pi + \pi - 6\sqrt{3} \right]$$

giving us

$$\int_0^\infty \frac{x^{\frac{1}{6}}}{(1+x)^2} \, dx = \frac{2\pi}{3}$$