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Question 1(a) If the group G has no non-trivial subgroups, show that G must be finite of
prime order.

Solution. Here we assume that G has more than one element.
G is cyclic: Let a ∈ G, a 6= e. Let H be the cyclic group generated by a. Then H 6= {e},

therefore H = G, so G is cyclic.
G has finite order: If order of G is infinite, then the group K generated by a2 is a

non-trivial subgroup of G, because K 6= {e}, K 6= G as a 6∈ K — note that a ∈ K, a = (a2)m

for some m shows that a is of finite order ⇒ G is of finite order. This is a contradiction,
hence order of G is finite.

The order of G is a prime number: If the order is pq, p > 1, q > 1, then order of ap

or equivalently the order of the group generated by ap is q ⇒ G has a nontrivial subgroup,
which is a contradiction. Hence order of G is a prime number.

Question 1(b) Show that a group of order 9 must be abelian.

Solution. We first prove that if G is a group with centre C such that G/C is cyclic, then
G is abelian. Let G/C be generated by the coset aC. Let x, y ∈ G, then xC = (aC)r

and yC = (aC)s for some integers r, s. This means that x ∈ arC, y ∈ asC and therefore
x = arc1, y = asc2, c1, c2 ∈ C. Now xy = arc1a

sc2 = arasc1c2 since c1 ∈ C, so it commutes
with every element of G. Similarly, c2 ∈ C so it commutes with ar, so

xy = ar+sc1c2 = as+rc2c1 = asc2a
rc1 = yx

Hence G is abelian.
Now we prove that a group G of order p2, p prime, is abelian. In particular, a group of

order 9 will be abelian. Let C be the center of G. Then C is of order p or p2 as the center
of a prime power group is non-trivial (Theorem 2.11.2 page 86 of Algebra by Herstein).
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If the order of C is p2, and G = C so G is abelian.
If order of C is p, then G/C is of order p and therefore is a cyclic group. Thus G must

be abelian as shown above. In either case G is abelian.

Question 1(c) If the characteristic of an integral domain D is finite, show that it is a prime
number.

Solution. If possible let m be the chararacteristic of D, where m = pq, p, q > 1. Let
a ∈ D, a 6= 0. Then 0 = ma2 = pa.qa. But D is an integral domain, therefore either pa = 0
or qa = 0. Suppose without loss of generality that pa = 0. If b ∈ D is arbitrary, then
0 = (pa)b = (pb)a. But a 6= 0, therefore pb = 0⇒ m is not the smallest positive integer such
that ma = 0 for every a ∈ D. Thus the assumption m has a proper factorization is wrong,
hence m is a prime number.

Question 2(a) Find the greatest common divisor (GCD) in J [i], the ring of Gaussian in-
tegers of (i) 3 + 4i and 4− 3i (ii) 11 + 7i and 18− i.

Solution. (i) 4 − 3i = (−i)(3 + 4i), and −i is a unit in J [i] as i(−i) = 1. It follows that
4 − 3i and 3 + 4i are associates of each other. Thus the GCD of 4 − 3i and 3 + 4i can be
taken to be either of them.

(ii) N(11 + 7i) = (11 + 7i)(11− 7i) = 170, N(18− i) = 325. Since (170, 325) = 5, we can
find integers x, y such that 170x+ 325y = 5, or

(11 + 7i)[(11− 7i)x] + (18− i)[(18 + i)y] = 5

showing that if α divides 11 + 7i, 18 − i in J [i], then α divides 5. Therefore the GCD of
11 + 7i, 18− i is a factor of 5, i.e. 1, 2− i, 2 + i, 5.

Now 11+7i
2+i

= (11+7i)(2−i)
5

= 29
5

+ 3
5
i. Thus 2 + i 6 | 11 + 7i.

11+7i
2−i

= (11+7i)(2+i)
5

= 3 + 5i. Thus 2 − i | 11 + 7i. 18−i
2−i

= (18−i)(2+i)
5

= 37
5

+ 16
5
i, so

2− i 6 | 18− i.
Thus the GCD of 11 + 7i and 18− i is 1.
Note: We could have got this by Euclid’s Algorithm also.

18− i = (11 + 7i) + 7− 8i N(7− 8i) < N(11 + 7i)
11 + 7i = (7− 8i)i+ 3 N(3) < N(7− 8i)
7− 8i = (2− 3i)3 + (1 + i) N(1 + i) < N(3)

3 = (1 + i)(1− i) + 1 N(1) < N(1 + i)

Thus the GCD of 11 + 7i and 18− i is 1.
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Question 2(b) Show that every maximal ideal of a commutative ring R with unit element
is a prime ideal.

Solution. Let M be a maximal ideal. Let ab ≡ 0 mod M , i.e. ab ∈ M . Suppose that
a 6∈ M i.e. a 6≡ 0 mod M . We shall show that b ≡ 0 mod M , proving that M is a
prime ideal. Consider 〈M,a〉 , the ideal generated by M and a. Clearly M ⊆ 〈M,a〉 and
M 6= 〈M,a〉 as a 6∈ M , therefore 〈M,a〉 = R as M is maximal. Thus e ∈ 〈M,a〉 , where
e is the unit element of R. Thus e = m + xa where m ∈ M,x ∈ R, so b = mb + xab.
mb ∈ M,xab ∈ M because ab ∈ M . Hence mb + xab = b ∈ M , which was to be proved,
showing that M is a prime ideal.

Remark. The converse of the above statement is not true. Let R = Z[x], P = 〈2〉 , the
ideal generated by 2, then P is prime but not maximal — in fact 〈2〉 ( 〈2, x〉 ( R.

Question 2(c) The field K is an extension of the field F . If α, β ∈ K are both algebraic
over F , show that α± β, αβ, α/β (if β 6= 0) are all algebraic over F .

Solution. Let p(x) be the minimal polynomial of α over F , then F [x]/〈p(x)〉 ' F [α], the
homomorphism from F [x] to F [α] being f(x) = f(α) with kernel 〈p(x)〉 . Thus F [α] = F (α)
(the smallest field containing F and α in K). If deg p(x) = n, then 1, α, . . . , αn−1 are linearly
independent over F and generate F (α). Hence (F (α) : F ) = n⇒ if γ ∈ F (α), γ is algebraic
over F as 1, γ, . . . , γn are linearly dependent over F , so γ is a root of a polynomial of degree
≤ n.

Now β being algebraic over F , is algebraic over F (α) ⇒ F (α.β) is a finite extension of
F (α), and (F (α, β) : F (α)) = degree of the minimal polynomial of β over F (α) ≤ degree
of the minimal polynomial of β over F . Since (F (α, β) : F ) = (F (α, β) : F (α))(F (α) : F )
(see question 2(c) of 1993), it follows that F (α, β) is an algebraic extension over F . In fact
if (F (α, β) : F ) = m and ζ ∈ F (α, β), then 1, ζ, ζ2, . . . , ζm are linearly dependent, so ζ is a
root of a polynomial of degree ≤ m. Thus α± β, αβ, α/β, being elements of F (α, β) are all
algebraic over F .
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